10 research outputs found

    Internal and external variability in regional simulations of the Iberian Peninsula climate over the last millennium

    Get PDF
    In this study we analyse the role of internal variability in regional climate simulations through a comparison of two regional paleoclimate simulations for the last millennium. They share the same external forcings and model configuration, differing only in the initial condition used to run the driving global model simulation. A comparison of these simulations allows us to study the role of internal variability in climate models at regional scales, and how it affects the long-term evolution of climate variables such as temperature and precipitation. The results indicate that, although temperature is homogeneously sensitive to the effect of external forcings, the evolution of precipitation is more strongly governed by random unpredictable internal dynamics. There are, however, some areas where the role of internal variability is lower than expected, allowing precipitation to respond to the external forcings. In this respect, we explore the underlying physical mechanisms responsible for it. This study identifies areas, depending on the season, in which a direct comparison between model simulations of precipitation and climate reconstructions would be meaningful, but also other areas where good agreement between them should not be expected even if both are perfect

    Quantifying the sensitivity of aerosol optical properties to the parameterizations of physico-chemical processes during the 2010 Russian wildfires and heatwave

    No full text
    The impact of aerosol–radiation and aerosol–cloud interactions on the radiative forcing is subject to large uncertainties. This is caused by the limited understanding of aerosol optical properties and the role of aerosols as cloud condensation/ice nuclei (CCN/IN). On the other hand, aerosol optical properties and vertical distribution are highly related, and their uncertainties come from different processes. This work attempts to quantify the sensitivity of aerosol optical properties (i.e. aerosol optical depth; AOD) and their vertical distribution (using the extinction coefficient, backscatter coefficient, and concentrations' species profiles) to key processes. In order to achieve this objective, sensitivity tests have been carried out, using the WRF-Chem regional fully coupled model by modifying the dry deposition, sub-grid convective transport, relative humidity, and wet scavenging. The 2010 Russian heatwave–wildfires episode has been selected as case study. Results indicate that AOD is sensitive to these key processes in the following order of importance: (1) modification of relative humidity, causing AOD differences of up to 0.6; (2) modification of vertical convection transport with AOD differences around −0.4; and (3) the dry deposition with AOD absolute differences of up to −0.35 and 0.3. Moreover, these AOD changes exhibit a nonlinear response. Both an increase and a decrease in the RH result in higher AOD values. On the other hand, both the increase and offset of the sub-grid convective transport lead to a reduction in the AOD over the fire area. In addition, a similar nonlinear response is found when reducing the dry deposition velocity; in particular, for the accumulation mode where the concentration of several species increases (while a decrease might be expected). These nonlinear responses are highly dependent on the equilibrium of the thermodynamics system sulfate–nitrate–SOA (secondary organic aerosol). In this sense, small changes in the concentration of one species can strongly affect others, finally affecting aerosol optical properties. Changes in this equilibrium could come from modifications in relative humidity, dry deposition, or vertical convective transport. By itself, dry deposition also presents a high uncertainty influencing the AOD representation

    A regional climate simulation over the Iberian Peninsula for the last millennium

    Get PDF
    A high-resolution (30 km) regional paleoclimate simulation of the last millennium over the Iberian Peninsula (IP) is presented. The simulation was performed with a climate version of the mesoscale model MM5 driven by the global model ECHO-G. Both models were driven by the same reconstructions of several external forcing factors. The high spatial resolution of the regional model allows climatologists to realistically simulate many aspects of the climate in the IP, as compared to an observational data set in the reference period 1961-1990. Although the spatial-averaged values developed by the regional model are tightly driven by the boundary conditions, it is capable to develop a different realisation of the past climate at regional scales, especially in the high-frequency domain and for precipitation. This has to be considered when comparing the results of climate simulations versus proxy reconstructions. A preliminary comparison of the simulation results with reconstructions of temperature and precipitation over the IP shows good agreement in the warming trends in the last century of the simulation, although there are large disagreements in key periods such as the precipitation anomalies in the Maunder Minimum

    The impact of the north atlantic oscillation on renewable energy resources in Southwestern Europe

    Get PDF
    Europe is investing considerably in renewable energies for a sustainable future, with both Iberian countries (Portugal and Spain) promoting significantly new hydropower, wind, and solar plants. The climate variability in this area is highly controlled by just a few large-scale teleconnection modes. However, the relationship between these modes and the renewable climate-dependent energy resources has not yet been established in detail. The objective of this study is to evaluate the impact of the North Atlantic Oscillation (NAO) on the interannual variability of the main and primary renewable energy resources in Iberia. This is achieved through a holistic assessment that is based on a 10-km-resolution climate simulation spanning the period 1959-2007 that provides physically consistent data of the various magnitudes involved. A monthly analysis for the extended winter (October-March) months shows that negative NAO phases enhance wind speeds (10%-15%) and, thereby, wind power (estimated around 30% at typical wind-turbine altitudes) and hydropower resources (with changes in precipitation exceeding 100% and implying prolonged responses in reservoir storage and release throughout the year), while diminishing the solar potential (10%-20%). Opposite signals were also sporadically identified, being well explained when taking into account the orography and the prevailing wind direction during bothNAOphases. An additional analysis using real wind, hydropower, and solar power generation data further confirms the strong signature of the NAO. © 2013 American Meteorological Society.Sonia Jerez and Ricardo M. Trigo acknowledge the support provided by the Portuguese Science Foundation (FCT) through the ENAC project (PTDC/AAC-CLI/103567/2008). Sergio M. Vicente- Serrano and Jorge Lorenzo Lacruz receive support from the following research projects: CGL2011-27574- CO2-02 and CGL2011-27536, financed by the Spanish Commission of Science and Technology and ‘‘Demonstration and validation of innovative methodology for regional climate change adaptation in the Mediterranean area’’ (LIFE MEDACC) financed by the LIFE Program of the European Commission. David Pozo Vazquez and Francisco Javier Santos Alamillo acknowledge funding provided by the Consejerıa de Innovaci on, Ciencia y Empresa (CICE) of the Junta de Andalusia (Spain) (Project P07-RNM-02872) and the FEDER. Raquel Lorente Plazas and Juan Pedro Montavez Gomez acknowledge support from the Ministerio de Ciencia e Innovacion (CGL2011-29672- C02-02) and from the Ministerio de Medio Ambiente (Project 200800050084265). Finally, the authors thank the anonymous reviewers for the valuable feedback they provided.Peer Reviewe

    An action-oriented approach to make the most of the wind and solar power complementarity

    No full text
    Solar and wind power curves typically exhibit inverted daily and annual cycles. However, their monthly anomalies show both positive and negative low correlation values across Europe, which compromises the effectiveness of their integration in the energy grid. This is because the well-known asymmetric response of the resources to the main large-scale teleconnection patterns vanishes and/or shows low synchronicity when the compound effect of these patterns is considered, as we show here. So we propose a step-wise method to help narrowing the monthly deviations of the total wind-plus-solar electricity production at the regional level from a given curve (here, the mean annual cycle of the total production), applied here across five continuous European regions but with straight application elsewhere and at other temporal scales. It detects the optimal shares of each power over previously identified sub-regions with homogeneous temporal variability of the monthly anomalies of the wind and solar capacity factors. Results show that, keeping the current total regional shares, just through a smart distribution of the power units, the standard deviation of the monthly anomalies of the total wind-plus-solar production is reduced up to 20% without loss in the mean capacity factor as compared to a base scenario with uniform distribution of the installations. This reduction grows above 50% if the total regional shares also came into the optimization game
    corecore