71 research outputs found

    Strategic Insights From Playing the Quantum Tic-Tac-Toe

    Full text link
    In this paper, we perform a minimalistic quantization of the classical game of tic-tac-toe, by allowing superpositions of classical moves. In order for the quantum game to reduce properly to the classical game, we require legal quantum moves to be orthogonal to all previous moves. We also admit interference effects, by squaring the sum of amplitudes over all moves by a player to compute his or her occupation level of a given site. A player wins when the sums of occupations along any of the eight straight lines we can draw in the 3×33 \times 3 grid is greater than three. We play the quantum tic-tac-toe first randomly, and then deterministically, to explore the impact different opening moves, end games, and different combinations of offensive and defensive strategies have on the outcome of the game. In contrast to the classical tic-tac-toe, the deterministic quantum game does not always end in a draw. In contrast also to most classical two-player games of no chance, it is possible for Player 2 to win. More interestingly, we find that Player 1 enjoys an overwhelming quantum advantage when he opens with a quantum move, but loses this advantage when he opens with a classical move. We also find the quantum blocking move, which consists of a weighted superposition of moves that the opponent could use to win the game, to be very effective in denying the opponent his or her victory. We then speculate what implications these results might have on quantum information transfer and portfolio optimization.Comment: 20 pages, 3 figures, and 3 tables. LaTeX 2e using iopart class, and braket, color, graphicx, multirow, subfig, url package

    Phytoplankton community changes in Kuantan Port (Malaysia), with emphasis on the paralytic-shellfish toxin-producing dinoflagellate Alexandrium tamiyavanichii

    Get PDF
    The Kuantan Port (Pahang, Malaysia, South China Sea) is a multi-cargo port located on the east coast of Peninsular Malaysia. The port has served as an important seaway to major ports in Asia-Pacific regions. In November 2013 and August 2014, two incidents of paralytic shellfish poisoning (PSP) have been consecutively reported in the Port. In this study, a field investigation was undertaken in the Port from April 2015 to May 2016 as an effort to continuously monitor the occurrence of HAB species following the PSP episodes in the year 2013–2014. Phytoplankton and hydrographic samples were collected for quantitative and qualitative assessments in a monthly interval. To precisely quantify the PSP-toxins producing species Alexandrium tamiyavanichii, a real-time quantitative PCR (qPCR) assay was applied to detect the motile cells and cysts. The results revealed the presence of A. tamiyavanichii but with extremely low cell abundances (<0.1% of the total abundances). The species was found co-existed with other Alexandrium species. Alexandrium abundance was associated with salinity and nitrogen to phosphorus ratios but negatively correlated with PO4-P and NH4-N as revealed in the canonical correspondence analysis. Low cell abundances of diarrhetic-shellfish toxins producing dinoflagellates (Dinophysis spp.) and fish-killing species (Prorocentrum sigmoides, Akashiwo sanguinea, Noctiluca scintillans, Chattonella spp.) were also encountered in the port. The results of this study would provide useful baseline information for the assessment and management of ballast water in Malaysian ports and its territorial waters

    Axon initial segment dysfunction in a mouse model of human genetic epilepsy with febrile seizures plus

    Get PDF
    Febrile seizures are a common childhood seizure disorder and a defining feature of genetic epilepsy with febrile seizures plus (GEFS+), a syndrome frequently associated with Na+ channel mutations. Here, we describe the creation of a knockin mouse heterozygous for the C121W mutation of the ß1 Na+ channel accessory subunit seen in patients with GEFS+. Heterozygous mice with increased core temperature displayed behavioral arrest and were more susceptible to thermal challenge than wild-type mice. Wild-type ß1 was most concentrated in the membrane of axon initial segments (AIS) of pyramidal neurons, while the ß1(C121W) mutant subunit was excluded from AIS membranes. In addition, AIS function, an indicator of neuronal excitability, was substantially enhanced in hippocampal pyramidal neurons of the heterozygous mouse specifically at higher temperatures. Computational modeling predicted that this enhanced excitability was caused by hyperpolarized voltage activation of AIS Na+ channels. This heat-sensitive increased neuronal excitability presumably contributed to the heightened thermal seizure susceptibility and epileptiform discharges seen in patients and mice with ß1(C121W) subunits. We therefore conclude that Na+ channel ß1 subunits modulate AIS excitability and that epilepsy can arise if this modulation is impaired

    Sampling harmful benthic dinoflagellates: Comparison of artificial and natural substrate methods

    Get PDF
    This study compared two collection methods for Gambierdiscus and other benthic harmful algal bloom (BHAB) dinoflagellates, an artificial substrate method and the traditional macrophyte substrate method. Specifically, we report the results of a series of field experiments in tropical environments designed to address the correlation of benthic dinoflagellate abundance on artificial substrate and those on adjacent macrophytes. The data indicated abundance of BHAB dinoflagellates associated with new, artificial substrate was directly related to the overall abundance of BHAB cells on macrophytes in the surrounding environment. There was no difference in sample variability among the natural and artificial substrates. BHAB dinoflagellate abundance on artificial substrates reached equilibrium with the surrounding population within 24 h. Calculating cell abundance normalized to surface area of artificial substrate, rather than to the wet weight of macrophytes, eliminates complications related to the mass of different macrophyte species, problems of macrophyte preference by BHAB dinoflagellates and allows data to be compared across studies. The protocols outlined in this study are the first steps to a standardized sampling method for BHAB dinoflagellates that can support a cell-based monitoring program for ciguatera fish poisoning. While this study is primarily concerned with the ciguatera-associated genus Gambierdiscus, we also include data on the abundance of benthic Prorocentrum and Ostreopsis cells

    A software pipeline for processing and identification of fungal ITS sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fungi from environmental samples are typically identified to species level through DNA sequencing of the nuclear ribosomal internal transcribed spacer (<it>ITS</it>) region for use in BLAST-based similarity searches in the International Nucleotide Sequence Databases. These searches are time-consuming and regularly require a significant amount of manual intervention and complementary analyses. We here present software – in the form of an identification pipeline for large sets of fungal <it>ITS </it>sequences – developed to automate the BLAST process and several additional analysis steps. The performance of the pipeline was evaluated on a dataset of 350 <it>ITS </it>sequences from fungi growing as epiphytes on building material.</p> <p>Results</p> <p>The pipeline was written in Perl and uses a local installation of NCBI-BLAST for the similarity searches of the query sequences. The variable subregion <it>ITS2 </it>of the <it>ITS </it>region is extracted from the sequences and used for additional searches of higher sensitivity. Multiple alignments of each query sequence and its closest matches are computed, and query sequences sharing at least 50% of their best matches are clustered to facilitate the evaluation of hypothetically conspecific groups. The pipeline proved to speed up the processing, as well as enhance the resolution, of the evaluation dataset considerably, and the fungi were found to belong chiefly to the <it>Ascomycota</it>, with <it>Penicillium </it>and <it>Aspergillus </it>as the two most common genera. The <it>ITS2 </it>was found to indicate a different taxonomic affiliation than did the complete <it>ITS </it>region for 10% of the query sequences, though this figure is likely to vary with the taxonomic scope of the query sequences.</p> <p>Conclusion</p> <p>The present software readily assigns large sets of fungal query sequences to their respective best matches in the international sequence databases and places them in a larger biological context. The output is highly structured to be easy to process, although it still needs to be inspected and possibly corrected for the impact of the incomplete and sometimes erroneously annotated fungal entries in these databases. The open source pipeline is available for UNIX-type platforms, and updated releases of the target database are made available biweekly. The pipeline is easily modified to operate on other molecular regions and organism groups.</p

    Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Identification of Yeasts Is Contingent on Robust Reference Spectra

    Get PDF
    BACKGROUND: Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for yeast identification is limited by the requirement for protein extraction and for robust reference spectra across yeast species in databases. We evaluated its ability to identify a range of yeasts in comparison with phenotypic methods. METHODS: MALDI-TOF MS was performed on 30 reference and 167 clinical isolates followed by prospective examination of 67 clinical strains in parallel with biochemical testing (total n = 264). Discordant/unreliable identifications were resolved by sequencing of the internal transcribed spacer region of the rRNA gene cluster. PRINCIPAL FINDINGS: Twenty (67%; 16 species), and 24 (80%) of 30 reference strains were identified to species, (spectral score ≥2.0) and genus (score ≥1.70)-level, respectively. Of clinical isolates, 140/167 (84%) strains were correctly identified with scores of ≥2.0 and 160/167 (96%) with scores of ≥1.70; amongst Candida spp. (n = 148), correct species assignment at scores of ≥2.0, and ≥1.70 was obtained for 86% and 96% isolates, respectively (vs. 76.4% by biochemical methods). Prospectively, species-level identification was achieved for 79% of isolates, whilst 91% and 94% of strains yielded scores of ≥1.90 and ≥1.70, respectively (100% isolates identified by biochemical methods). All test scores of 1.70-1.90 provided correct species assignment despite being identified to "genus-level". MALDI-TOF MS identified uncommon Candida spp., differentiated Candida parapsilosis from C. orthopsilosis and C. metapsilosis and distinguished between C. glabrata, C. nivariensis and C. bracarensis. Yeasts with scores of <1.70 were rare species such as C. nivariensis (3/10 strains) and C. bracarensis (n = 1) but included 4/12 Cryptococcus neoformans. There were no misidentifications. Four novel species-specific spectra were obtained. Protein extraction was essential for reliable results. CONCLUSIONS: MALDI-TOF MS enabled rapid, reliable identification of clinically-important yeasts. The addition of spectra to databases and reduction in identification scores required for species-level identification may improve its utility

    International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database - the quality controlled standard tool for routine identification of human and animal pathogenic fungi

    Get PDF
    Human and animal fungal pathogens are a growing threat worldwide leading to emerging infections and creating new risks for established ones. There is a growing need for a rapid and accurate identification of pathogens to enable early diagnosis and targeted antifungal therapy. Morphological and biochemical identification methods are time-consuming and require trained experts. Alternatively, molecular methods, such as DNA barcoding, a powerful and easy tool for rapid monophasic identification, offer a practical approach for species identification and less demanding in terms of taxonomical expertise. However, its wide-spread use is still limited by a lack of quality-controlled reference databases and the evolving recognition and definition of new fungal species/complexes. An international consortium of medical mycology laboratories was formed aiming to establish a quality controlled ITS database under the umbrella of the ISHAM working group on "DNA barcoding of human and animal pathogenic fungi." A new database, containing 2800 ITS sequences representing 421 fungal species, providing the medical community with a freely accessible tool at http://www.isham.org and http://its.mycologylab.org/ to rapidly and reliably identify most agents of mycoses, was established. The generated sequences included in the new database were used to evaluate the variation and overall utility of the ITS region for the identification of pathogenic fungi at intra-and interspecies level. The average intraspecies variation ranged from 0 to 2.25%. This highlighted selected pathogenic fungal species, such as the dermatophytes and emerging yeast, for which additional molecular methods/genetic markers are required for their reliable identification from clinical and veterinary specimens.This study was supported by an National Health and Medical Research Council of Australia (NH&MRC) grant [#APP1031952] to W Meyer, S Chen, V Robert, and D Ellis; CNPq [350338/2000-0] and FAPERJ [E-26/103.157/2011] grants to RM Zancope-Oliveira; CNPq [308011/2010-4] and FAPESP [2007/08575-1] Fundacao de Amparo Pesquisa do Estado de So Paulo (FAPESP) grants to AL Colombo; PEst-OE/BIA/UI4050/2014 from Fundacao para a Ciencia e Tecnologia (FCT) to C Pais; the Belgian Science Policy Office (Belspo) to BCCM/IHEM; the MEXBOL program of CONACyT-Mexico, [ref. number: 1228961 to ML Taylor and [122481] to C Toriello; the Institut Pasteur and Institut de Veil le Sanitaire to F Dromer and D Garcia-Hermoso; and the grants from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and the Fundacao de Amparo a Pesquisa do Estado de Goias (FAPEG) to CM de Almeida Soares and JA Parente Rocha. I Arthur would like to thank G Cherian, A Higgins and the staff of the Molecular Diagnostics Laboratory, Division of Microbiology and Infectious Diseases, Path West, QEII Medial Centre. Dromer would like to thank for the technical help of the sequencing facility and specifically that of I, Diancourt, A-S Delannoy-Vieillard, J-M Thiberge (Genotyping of Pathogens and Public Health, Institut Pasteur). RM Zancope-Oliveira would like to thank the Genomic/DNA Sequencing Platform at Fundacao Oswaldo Cruz-PDTIS/FIOCRUZ [RPT01A], Brazil for the sequencing. B Robbertse and CL Schoch acknowledge support from the Intramural Research Program of the NIH, National Library of Medicine. T Sorrell's work is funded by the NH&MRC of Australia; she is a Sydney Medical School Foundation Fellow.info:eu-repo/semantics/publishedVersio

    Liquid crystal physical gel formed by cholesteryl stearate for light scattering display material

    No full text
    A liquid crystal physical gel was prepared by the self-assembly of cholesteryl stearate in a nematic liquid crystal, 4-cyano-4′-pentylbiphenyl. The electro-optical properties were tuned by varying the gelator concentration and the gelation conditions. Polarized optical microscopy revealed that cholesteric cholesteryl stearate induced chiral nematic phase in 4-cyano-4′-pentylbiphenyl during the gelation process. As a result, a plate-like gel structure consisting of spherical micropores was formed, as observed by scanning electron microscopy. Electron spin resonance spectroscopy showed that the liquid crystal director orientations in these macrophase-separated structures were massively randomised. For these reasons, the liquid crystal physical gel generated a strong light scattering effect. For 48.0 wt% cholesteryl stearate gelled 4-cyano-4′-pentylbiphenyl, the turbid appearance could be switched to a transparent state using a 5.0 V alternating current. The response time was about 3.7 μs. This liquid crystal physical gel has potential for use in light scattering electro-optical displays

    Reduced dendritic arborization and hyperexcitability of pyramidal neurons in a Scn1b-based model of Dravet syndrome

    No full text
    Epileptic encephalopathies, including Dravet syndrome, are severe treatment-resistant epilepsies with developmental regression. We examined a mouse model based on a human β1 sodium channel subunit (Scn1b) mutation. Homozygous mutant mice shared phenotypic features and pharmaco-sensitivity with Dravet syndrome. Patch-clamp analysis showed that mutant subicular and layer 2/3 pyramidal neurons had increased action potential firing rates, presumably as a consequence of their increased input resistance. These changes were not seen in L5 or CA1 pyramidal neurons. This raised the concept of a regional seizure mechanism that was supported by data showing increased spontaneous synaptic activity in the subiculum but not CA1. Importantly, no changes in firing or synaptic properties of gamma-aminobutyric acidergic interneurons from mutant mice were observed, which is in contrast with Scn1a-based models of Dravet syndrome. Morphological analysis of subicular pyramidal neurons revealed reduced dendritic arborization. The antiepileptic drug retigabine, a K+ channel opener that reduces input resistance, dampened action potential firing and protected mutant mice from thermal seizures. These results suggest a novel mechanism of disease genesis in genetic epilepsy and demonstrate an effective mechanism-based treatment of the disease

    Sampling harmful benthic dinoflagellates: Comparison of artificial and natural substrate methods

    No full text
    This study compared two collection methods for Gambierdiscus and other benthic harmful algal bloom (BHAB) dinoflagellates, an artificial substrate method and the traditional macrophyte substrate method. Specifically, we report the results of a series of field experiments in tropical environments designed to address the correlation of benthic dinoflagellate abundance on artificial substrate and those on adjacent macrophytes. The data indicated abundance of BHAB dinoflagellates associated with new, artificial substrate was directly related to the overall abundance of BHAB cells on macrophytes in the surrounding environment. There was no difference in sample variability among the natural and artificial substrates. BHAB dinoflagellate abundance on artificial substrates reached equilibrium with the surrounding population within 24 h. Calculating cell abundance normalized to surface area of artificial substrate, rather than to the wet weight of macrophytes, eliminates complications related to the mass of different macrophyte species, problems of macrophyte preference by BHAB dinoflagellates and allows data to be compared across studies. The protocols outlined in this study are the first steps to a standardized sampling method for BHAB dinoflagellates that can support a cell-based monitoring program for ciguatera fish poisoning. While this study is primarily concerned with the ciguatera-associated genus Gambierdiscus, we also include data on the abundance of benthic Prorocentrum and Ostreopsis cells
    corecore