1,391 research outputs found

    Theory of dark resonances for alkali vapors in a buffer-gas cell

    Get PDF
    We develop an analytical theory of dark resonances that accounts for the full atomic-level structure, as well as all field-induced effects such as coherence preparation, optical pumping, ac Stark shifts, and power broadening. The analysis uses a model based on relaxation constants that assumes the total collisional depolarization of the excited state. A good qualitative agreement with experiments for Cs in Ne is obtained.Comment: 16 pages; 7 figures; revtex4. Accepted for publication in PR

    The Psyllidae of British Columbia with a key to species

    Get PDF
    A list is presented of the 38 plant-lice or Psyllidae recorded from British Columbia. Keys to the species are given with locality records, together with an additional 28 species recorded from adjacent areas of Alberta, Washington and Alaska. The keys are adapted from those given in monographs by Crawford (1914), Caldwell (1938a) and Tuthill (1943) with the addition of ten species not included in their keys

    Discrepancies between CFHTLenS cosmic shear and Planck: new physics or systematic effects?

    Get PDF
    There is currently a discrepancy in the measured value of the amplitude of matter clustering, parameterised using σ8\sigma_8, inferred from galaxy weak lensing, and cosmic microwave background data, which could be an indication of new physics, such as massive neutrinos or a modification to the gravity law, or baryon feedback. In this paper we make the assumption that the cosmological parameters are well determined by Planck, and use weak lensing data to investigate the implications for baryon feedback and massive neutrinos, as well as possible contributions from intrinsic alignments and biases in photometric redshifts. We apply a non-parametric approach to model the baryonic feedback on the dark matter clustering, which is flexible enough to reproduce the OWLS and Illustris simulation results. The statistic we use, 3D cosmic shear, is a method that extracts cosmological information from weak lensing data using a spherical-Bessel function power spectrum approach. We analyse the CFHTLenS weak lensing data and, assuming best fit cosmological parameters from the Planck CMB experiment, find that there is no evidence for baryonic feedback on the dark matter power spectrum, but there is evidence for a bias in the photometric redshifts in the CFHTLenS data, consistent with a completely independent analysis by Choi et al. (2015), based on spectroscopic redshifts; and that these conclusions are robust to assumptions about the intrinsic alignment systematic. We also find an upper limit on the sum of neutrino masses conditional on other Λ\LambdaCDM parameters being fixed, of <0.28< 0.28 eV (1σ1\sigma).Comment: 13 pages, 6 figures, accepted to MNRA

    Scaling in directed dynamical small-world networks with random responses

    Full text link
    A dynamical model of small-world network, with directed links which describe various correlations in social and natural phenomena, is presented. Random responses of every site to the imput message are introduced to simulate real systems. The interplay of these ingredients results in collective dynamical evolution of a spin-like variable S(t) of the whole network. In the present model, global average spreading length \langel L >_s and average spreading time _s are found to scale as p^-\alpha ln N with different exponents. Meanwhile, S behaves in a duple scaling form for N>>N^*: S ~ f(p^-\beta q^\gamma t'_sc), where p and q are rewiring and external parameters, \alpha, \beta, \gamma and f(t'_sc) are scaling exponents and universal functions, respectively. Possible applications of the model are discussed.Comment: 4 pages, 6 Figure

    Relativistic eikonal description of A(p,pN) reactions

    Get PDF
    The authors present a relativistic and cross-section factorized framework for computing quasielastic A(p,pN) observables at intermediate and high energies. The model is based on the eikonal approximation and can accomodate both optical potentials and the Glauber method for dealing with the initial- and final-state interactions (IFSI). At lower nucleon energies, the optical-potential philosophy is preferred, whereas at higher energies the Glauber method is more natural. This versatility in dealing with the IFSI allows one to describe A(p,pN) reactions in a wide energy range. Most results presented here use optical potentials as this approach is argued to be the optimum choice for the kinematics of the experiments considered in the present paper. The properties of the IFSI factor, a function wherein the entire effect of the IFSI is contained, are studied in detail. The predictions of the presented framework are compared with two kinematically different experiments. First, differential cross sections for quasielastic proton scattering at 1 GeV off 12C, 16O, and 40Ca target nuclei are computed and compared to data from PNPI. Second, the formalism is applied to the analysis of a 4He(p,2p) experiment at 250 MeV. The optical-potential calculations are found to be in good agreement with the data from both experiments, showing the reliability of the adopted model in a wide energy range.Comment: 34 pages, 14 figures, accepted for publication in Phys. Rev.

    Size magnification as a complement to Cosmic Shear

    Get PDF
    We investigate the extent to which cosmic size magnification may be used to com- plement cosmic shear in weak gravitational lensing surveys, with a view to obtaining high-precision estimates of cosmological parameters. Using simulated galaxy images, we find that size estimation can be an excellent complement, finding that unbiased estimation of the convergence field is possible with galaxies with angular sizes larger than the point-spread function (PSF) and signal-to-noise ratio in excess of 10. The statistical power is similar to, but not quite as good as, cosmic shear, and it is subject to different systematic effects. Application to ground-based data will be challeng- ing, with relatively large empirical corrections required to account for with biases for galaxies which are smaller than the PSF, but for space-based data with 0.1 arcsecond resolution, the size distribution of galaxies brighter than i=24 is ideal for accurate estimation of cosmic size magnification.Comment: 11 pages, 11 figures, accepted by MNRA

    On the unique possibility to increase significantly the contrast of dark resonances on D1 line of 87^{87}Rb

    Full text link
    We propose and study, theoretically and experimentally, a new scheme of excitation of a coherent population trapping resonance for D1 line of alakli atoms with nuclear spin I=3/2I=3/2 by bichromatic linearly polarized light ({\em lin}∣∣||{\em lin} field) at the conditions of spectral resolution of the excited state. The unique properties of this scheme result in a high contrast of dark resonance for D1 line of 87^{87}Rb.Comment: 9 pages, 7 figures. This material has been partially presented on ICONO-2005, 14 May 2005, St. Petersburg, Russia. v2 references added; text is changed a bi

    Nuclear quadrupole resonances in compact vapor cells: the crossover from the NMR to the NQR interaction regimes

    Full text link
    We present the first experimental study that maps the transformation of nuclear quadrupole resonances from the pure nuclear quadrupole regime to the quadrupole-perturbed Zeeman regime. The transformation presents an interesting quantum-mechanical problem, since the quantization axis changes from being aligned along the axis of the electric-field gradient tensor to being aligned along the magnetic field. We achieve large nuclear quadrupole shifts for I = 3/2 131-Xe by using a 1 mm^3 cubic cell with walls of different materials. When the magnetic and quadrupolar interactions are of comparable size, perturbation theory is not suitable for calculating the transition energies. Rather than use perturbation theory, we compare our data to theoretical calculations using a Liouvillian approach and find excellent agreement.Comment: 4 pages, 4 figure

    Finding Evidence for Massive Neutrinos using 3D Weak Lensing

    Full text link
    In this paper we investigate the potential of 3D cosmic shear to constrain massive neutrino parameters. We find that if the total mass is substantial (near the upper limits from LSS, but setting aside the Ly alpha limit for now), then 3D cosmic shear + Planck is very sensitive to neutrino mass and one may expect that a next generation photometric redshift survey could constrain the number of neutrinos N_nu and the sum of their masses m_nu to an accuracy of dN_nu ~ 0.08 and dm_nu ~ 0.03 eV respectively. If in fact the masses are close to zero, then the errors weaken to dN_nu ~ 0.10 and dm_nu~0.07 eV. In either case there is a factor 4 improvement over Planck alone. We use a Bayesian evidence method to predict joint expected evidence for N_nu and m_nu. We find that 3D cosmic shear combined with a Planck prior could provide `substantial' evidence for massive neutrinos and be able to distinguish `decisively' between many competing massive neutrino models. This technique should `decisively' distinguish between models in which there are no massive neutrinos and models in which there are massive neutrinos with |N_nu-3| > 0.35 and m_nu > 0.25 eV. We introduce the notion of marginalised and conditional evidence when considering evidence for individual parameter values within a multi-parameter model.Comment: 9 pages, 2 Figures, 2 Tables, submitted to Physical Review
    • …
    corecore