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ABSTRACT

There is currently a discrepancy in the measured value of the amplitude of matter clustering,
parametrized using o'g, inferred from galaxy weak lensing, and cosmic microwave background
(CMB) data, which could be an indication of new physics, such as massive neutrinos or a mod-
ification to the gravity law, or baryon feedback. In this paper we make the assumption that
the cosmological parameters are well determined by Planck, and use weak lensing data to
investigate the implications for baryon feedback and massive neutrinos, as well as possible
contributions from intrinsic alignments and biases in photometric redshifts. We apply a non-
parametric approach to model the baryonic feedback on the dark matter clustering, which is
flexible enough to reproduce the OWLS (OverWhelmingly Large Simulations) and Illustris
simulation results. The statistic we use, 3D cosmic shear, is a method that extracts cosmo-
logical information from weak lensing data using a spherical-Bessel function power spectrum
approach. We analyse the CFHTLenS weak lensing data and, assuming best-fitting cosmolog-
ical parameters from the Planck CMB experiment, find that there is no evidence for baryonic
feedback on the dark matter power spectrum, but there is evidence for a bias in the photometric
redshifts in the CFHTLenS data, consistent with a completely independent analysis by Choi
et al., based on spectroscopic redshifts, and that these conclusions are robust to assumptions
about the intrinsic alignment systematic. We also find an upper limit, of <0.28 eV (1o), to the
sum of neutrino masses conditional on other A-cold-dark-matter parameters being fixed.

Key words: gravitational lensing: weak — cosmological parameters.

turbations, the abundance of baryonic matter (through the baryon

1 INTRODUCTION

Weak lensing of galaxy images, the effect where the observed shape
of galaxies is distorted by the presence of mass perturbations along
the line of sight, is a powerful probe of the matter distribution in
the Universe. This is because the distortion — a change in the third
eccentricity, or third flattening (known as ‘ellipticity’), and size of
galaxy images — depends on perturbations in the total matter den-
sity which, because we live in an apparently dark matter-dominated
Universe, is in principle sensitive to the dark matter power spec-
trum directly. Accessing the matter power spectrum through weak
lensing measurements results in a statistic that contains a wealth
of cosmological information, where observations as a function of
redshift can be used to infer the initial conditions of the matter per-
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acoustic oscillations), the linear and non-linear growth of structure,
as well as the mass and hierarchy of neutrinos (e.g. Jimenez et al.
2010). In this paper we present 3D power spectrum measurements
of the weak lensing effect, a statistic known as 3D cosmic shear, and
use this to explore differences between the inferred matter power
spectrum and that predicted by the standard ACDM (A cold dark
matter) model as set by the latest cosmic microwave background
(CMB) data. 3D cosmic shear is complementary to galaxy cluster-
ing measurements of the matter power spectrum that can be affected
by the potentially biased mapping between the galaxy distribution
and the underlying dark matter distribution.

There are several ways in which the weak lensing signal can be
used to infer cosmological parameters. The most popular method
to be applied to data is a real (configuration) space measurement
of the 2-point statistics of the data, a correlation function, of the
galaxy ellipticities either on an assumed 2D plane or in a series of
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2D redshift slices (where interslice and intraslice correlations are
performed) that is referred to as ‘tomography’ (Hu 1999). This ap-
proach has a complicated scale and redshift-dependent sensitivity
to the matter power spectrum (see e.g. Kitching, Heavens & Miller
2011; MacCrann et al. 2015). Like all correlation-function-based
approaches, it does not offer a clear separation of linear versus
non-linear scales which is more natural in Fourier-space. Depend-
ing on the choice of weight functions used, the observations need
to be tested against predictions that necessitate accurate modelling
to very small scales down to ~300 kpc or less. On these scales
poorly known effects are dominant, making accurate cosmologi-
cal parameter inference extremely challenging. Such configuration-
space-based measurements on recent data from the CFHTLenS (Er-
ben et al. 2013; Heymans et al. 2013) survey have been shown to
be statistically inconsistent/discrepant (colloquially referred to as
being ‘in tension’) with recent measurements of the matter clus-
tering from the CMB (Planck Collaboration XVI 2014). Within a
standard, power-law ACDM model, the value of the variance of the
linear matter perturbations on 8 h! Mpc scales, o', inferred from
the weak lensing correlation-function measurements is lower than
that inferred from the CMB.

There have been several studies (Battye, Moss & Pearson 2015;
Dossett et al. 2015; MacCrann et al. 2015; Joudaki et al. 2016)
attempting to determine the cause of this discrepancy by adding
additional parameters to the likelihood analyses which describe both
systematic effects in the data or in the analysis and new physics. In
this paper we use an alternative 3D power spectrum approach: 3D
cosmic shear.

The 3D cosmic shear method uses the 3D spherical-Bessel rep-
resentation of the weak lensing galaxy ellipticities as data. The
covariance of this data — the 3D power spectrum — is the quan-
tity that contains the cosmological information. This statistic was
introduced by Heavens (2003) and developed by Castro, Heavens
& Kitching (2005), Heavens, Kitching & Taylor (2006), Kitching
(2007), Kitching, Taylor & Heavens (2008), and Kitching et al.
(2011). It was a applied to a small data set in Kitching et al. (2007),
and then on a wide-field data set in Kitching et al. (2014) where
several improvements to the method were also presented; including
the splitting of the signal into £- and B-mode components, the appli-
cation of a pseudo-C, analysis accounting for the mask in the data,
and the extension of the method to include the correct correlations
between the real and imaginary parts of the theoretical covariance.
An investigation of the scale-dependency of the statistic was also
presented, where it was shown that, by making simple scale-cuts
in the data vector and theory, a self-consistent set of scales can be
defined to which the signal is sensitive over all redshifts. This prop-
erty makes the 3D cosmic shear approach robust to effects which
are strongly scale-dependent or localized in certain & scales, such
as strong non-linearities. In Kitching et al. (2014) the data set used
was again CFHTLenS and it was found that when only using large
scales in the statistic, more than ~1 Mpc, results were consistent
with the CMB Planck data — albeit with larger error-bars — but when
including smaller scales of ~0.2—1 Mpc results were no longer con-
sistent. On small scales it was found that the amplitude of matter
clustering parametrized by oy was lower than that measured from
Planck at a significance of more than 2.

Finding an explanation for this discrepancy with the Planck data
is necessary, since if it were real it could be an important signature
of new physics. In this paper we explore the reason for this dis-
crepancy by extending the analysis and the modelling presented in
Kitching et al. (2014). In particular we make several improvements
to the statistic (as a result of computational software and hardware
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improvements) that allow for 10 times more angular modes, and
twice as many radial modes to be included in the analysis; this
results in a higher total signal-to-noise, and therefore better cosmo-
logical constraints, and an increased resolution in the angular and
radial directions. We also extend the calculation to include intrinsic
galaxy alignment effects (see e.g. Joachimi et al. 2015, for areview),
and we test the method more extensively on simulated data that in-
cludes simulated masks, to show that the pseudo-C, approach does
not introduce biases in the cosmological parameters. We extend the
cosmological model that is fitted to the data to include the possibility
of massive neutrinos, and also include a parametrization for small-
scale departures from the dark matter-only power spectrum caused
by the presence of baryons. Finally we include systematic nuisance
parameters to encode potential photometric redshift biases.

In this paper we will pay particular attention to the scale depen-
dence of changes in the matter power spectrum on small-scales k =~
1.5-5h Mpc~' (physical scales of ~1 Mpc). The power spectrum
can be delimited into various regions as a function of scale that re-
flects the dominant physics at play which must be included to model
its functional form: on the very largest scales k < 0.1 2 Mpc™! the
amplitude of matter clustering is dominated by linear physics evolv-
ing the initial primordial density fluctuations in the early universe;
on intermediate scales k ~ 0.5—1 h Mpc~! gravitational collapse of
the dark matter dominates, this is a non-linear process but can be
investigated using analytical techniques and N-body simulations;
then on the smallest scales of 1 Mpc and less in the highly non-
linear regime (k > 1/ Mpc™') non-gravitational effects driven by
the baryonic content of the Universe may begin to dominate. This
effect is expected to develop as galaxy evolution progresses, with
the peak of the star formation rate occurring at redshifts of approxi-
mately z 2~ 2. Hence, the small-scale power spectrum is very poorly
understood at the current time for three reasons. The first is that
dark matter clustering is not well modelled: current simulations are
only precise to a few per cent up to scales of ~1 Mpc, but not below
(e.g. Lawrence et al. 2010). The second is that the ACDM paradigm
could break down at small scales and new physical processes could
be present, for example some modified gravity models, neutrino
physics, and warm dark matter models have signatures at scales
smaller than 1 Mpc. The third is that baryonic feedback processes
may dominate on scales smaller than 1 Mpc (e.g. van Daalen et al.
2011). Of these problems the baryonic feedback process is the least
well understood. On scales of 1 Mpc and less, stars, galaxies, and
other baryonic components of the Universe can affect the dark mat-
ter clustering, in an unknown way. White (2004) provided a simple
model to elucidate the effects of baryonic cooling on predictions of
the power spectrum for weak gravitational lensing, and predicted
that percent level effects may be seen. Zhan & Knox (2004) pro-
vided a mixed dark matter—baryon model that included effects of
baryonic cooling and the intercluster medium; they also found that
the weak lensing power spectrum would be impacted by a few per
cent. Jing et al. (2006) ran a set of N-body and hydrodynamical sim-
ulations to attempt to model the impact of baryons and found that
up to a 10 per cent effect could be caused on the weak lensing power
spectrum. Zentner, Rudd & Hu (2008), building on the N-body sim-
ulations from Rudd, Zentner & Kravtsov (2008) proposed that the
problem of baryonic feedback could be mitigated by self-calibrating
weak lensing surveys i.e. adding additional (nuisance) parameters
to model the impact of baryons. They used a simple toy model
where only the concentration of dark matter haloes was changed,
and found that cosmological parameters could be biased by up to
40 per cent using even this simple model. Mead et al. (2015) also
use a physically motivated model based on the modification to halo
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profiles. A significant advance was made when Schaye et al. (2010)
and van Daalen et al. (2011) used the N-body and hydrodynamical
simulations called OWLS (OverWhelmingly Large Simulations)
that also included active galactic nuclei (AGN) feedback. They
found that the addition of AGN could have up to a 20 per cent effect
on the matter power spectrum at k > 5 & Mpc~!, other mechanisms
have smaller effects, around a few per cent. Therefore there are at
least three effects: baryonic cooling, the effects of the intracluster
medium, and AGN. However this is by no means an exhaustive list,
for example hypernovae may also impact the dark matter cluster-
ing, and each of these is not an isolated effect: feedback between
these effects may also be important. In this paper we present a
flexible non-parametric approach for extracting small-scale power
spectrum variation from N-body simulations and apply this to the II-
lustris (Nelson et al. 2015) and OWLS simulations. We then use the
functions and parameters determined by this method, as additional
degrees of freedom in the likelihood analysis of the data using 3D
cosmic shear.

This paper is structured as follows. In Section 2 we present the
method and approach, in Section 3 we present results and discussion,
and in Section 4 we present conclusions.

2 METHODOLOGY

We refer to Kitching et al. (2014) for an exposition of the analysis
in this paper, and also to Kitching, Heavens & Das (2015) for the
inclusion of intrinsic galaxy alignment effects. We only restate the
main points of this formalism here, and refer the reader to these
papers for a full and more detailed presentation of the method.

2.1 Formalism

We use a 3D spherical-Bessel representation of the galaxy ellipticity
field where the transform coefficients computed on the data are

eok) =Y €0, r)jelkr)e™, o)
g

where k is a radial wavenumber, £ is an angular wavenumber, 6
and r are vector angular and radial coordinates, respectively, with
r being a comoving distance, the j,(kr) are spherical-Bessel func-
tions, with £ = |£] > 1. Flat sky is assumed. This is a sum over all
galaxy ellipticities e4(f, ) in a data set, labelled g, that are complex
(spin-2) quantities e, = e ; + ie; ,. The resulting four transform
coefficients are complex quantities, that can be weighted by £-mode
combinations to separate out the transform coefficients that relate
to the E- and B-mode components of the ellipticity field e” (k) and
el (k), and also to remove the effects of any multiplicative system-
atic effect in the data measurements, as described in Kitching et al.
(2014; appendix A).

The mean of these transform coefficients is zero, but the covari-
ance is not and it is this that contains the cosmological information.
The likelihood for parameters of interest 1, assumed to be Gaussian,
can be written as

14

1 1
L@®) =D P | —3 2 Z0A G DZIG) 2 @)
1

the labels i and j run over a range {kmin, - - - » kmax } Where kpiy and
kmnax are the minimum and maximum k-mode values, so that for
N, elements in the k-mode range the sums are over 2N, modes.
Ze(i) = (eE(k), ef*(k))T is a concatenation of ef (k) and ef*(k),
both of which are vectors N; in length. The affix-covariance matrix

accounts for the complex, and correlated, nature of the spherical-
Bessel transform of the ellipticity field and is equal to

aitid) = (g ) ®

which is made of four blocks of N, x N, matrices that are
Lok, k') = R[Cy(k, k)] + I[Ce(k, k)]
Ry(k, k') = R[Cy(k, k')] = I[Ce(k, k)], “4)

where I' is a covariance matrix and R is a relation matrix. The matrix
Cy(k, k') is the complex covariance of the predicted signal (predicted
covariance of the E-mode spherical-Bessel transform coefficients),
which is a combination of signal and noise terms

Co(k, k') = Co(k, k') + Ny(k, k'), (5)

where the noise term N, (k, k') is given by equation 3 in Kitching et al.
(2014). The signal part is a pseudo-C, estimator of the predicted
covariance that accounts for the masking of the data through a
multiplication with a 3D mixing matrix M g’? via

~ T2 v A

Colk, k) = (5> ZE (Z) 3¢S <kz,k/z) , ©6)
The original signal covariance C} can be derived using the rela-
tionship between the lens potential and the Newtonian potential
integrated along the line of sight, and linking the Newtonian poten-
tial to the underlying matter perturbations via Poisson’s equation.
The dependence on cosmological parameters comes through the C5.
This results in a predicted complex covariance that is a combination
of terms from the intrinsic galaxy ellipticity and additional cosmic
shear.

The observed ellipticity is a combination of the intrinsic (un-
lensed) galaxy ellipticity e' and the additional ellipticity caused by
the weak gravitational lensing along the line of sight called shear
y. In the case that || < |e'| then the observed ellipticity is a linear
sum of these quantities e = e' + y, which means that when taking
the covariance of the observed shear transform coefficients the re-
sult is four terms that correspond to the quadratic combination of
the intrinsic ellipticity and the shear (see Kitching et al. 2015):

CPk, Ky = C/7 (k, k') + C}'(k, k)
+C (kK'Y + CY (k. K). @)

Here the superscript refers to the terms that are included in each
covariance. The last term — the correlation between a foreground
galaxy’s observed shear and a background galaxy’s intrinsic ellip-
ticity — is expected to be zero by construction, but we include it in
all calculations as redshift uncertainty can reverse the order of the
assumed distances, and cause the observed correlation to be non-
zero. The power spectrum for quantities X and Y, which in this case
are either / or y, can be written as a matrix multiplication:

X =GiGh” (8)

where { refers to a transpose and complex conjugate and the matrices

G¥ are

( A k)l /2
k

where Ak is a resolution in the radial wavenumber that approx-

imates an integral, D = D; + iD, is a complex variable where

D, = %(Zf, —¢%) and D, = —{,£,, where £, and ¢, refer to the

wavenumber components in the x and y Cartesian coordinate frame.

GY(k,K)=DA GY(k, k'), )
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A =3QuH; /(mc?) where Hy is the current value of the Hubble
parameter, 2y is the ratio of the total matter density to the critical
density, and c is the speed of light in a vacuum. The G matrices are
different for the intrinsic and shear parts of the covariance.

For shear the G matrix is

Gl (k, k) = /dzpdz'ﬁ(kr[zp])n(zp)p(z'Izp)UZ’(r[z’], kh,  (10)

where n(z,)dz, is the number of galaxies in a spherical shell of
radius z, and thickness dz;,, p(z’|z,) is the probability of a galaxy
at redshift z’ to have a photometric redshift z,,, j,(kr) are spherical-
Bessel functions.

The matrix U is
,Fx(r,r’)

a(r’)
where P(k; r) is the matter power spectrum at comoving distance r
at radial wavenumber k; we refer the reader to Castro et al. (2005)
for a discussion of the approximation involved in using the square
root of the power spectrum here. Fx = Sg(r — r')/Sx(r) /Sk(r') is the
lensing kernel where S(r) = sinh (7), r, sin (r) for cosmologies with
spatial curvature K = —1, 0, 1, and a(r) is the dimensionless scale-
factor at the cosmic time related to the look-back time at comoving
distance r. The combination of the G and U matrices create the
covariance of the y g(k, £) spherical-Bessel transform coefficients
where C}V (k, k') = (Rlyz(k, £)IR[yg(k', £)]); the same expression
is true for imaginary parts I[yg(k, £)] and in the likelihood both
terms are contributors. Throughout this investigation we use cams!
to calculate the matter power spectra with the HALoFIT (Smith et al.
2003) non-linear correction and the module for Parametrized Post-
Friedmann (PPF) prescription for the dark energy perturbations (Hu
& Sawicki 2007; Fang, Hu & Lewis 2008a; Fang et al. 2008b)>.

For the unlensed part of the galaxy ellipticity, we use the linear
alignment model of Hirata & Seljak (2004), where the intrinsic
galaxy ellipticity is linearly related to the local second derivative of
the primordial Newtonian potential. This propagates through to a
spherical-Bessel covariance, as described in Kitching et al. (2015).
In this case the G matrix is

rlz]
U (rlz) k) = / ar JokrYP (ks ), (11
0

Uj(r[z'1, k)

12
TR (6

Gk, k') = / dz,d2’ je(kr[zpDn(zp) p(2|zp)

where

82" = nI('[z])

rlz]
Ulrlz), k) = / dr’ Jetkr Y P2 r'y,  (13)
0

a(r’)
and the factor 1(z[r]) is
_ c? 2.1 x 1073A]A
e (i) (222).

Ajs parametrizes the amplitude of the intrinsic alignment signal,
which has been used in several forecasting papers (e.g. Kirk et al.
2015), and also fit to data using correlation-function 2-point statis-
tics (e.g. Heymans et al. 2013). The U matrices for both the shear
and intrinsic signal effectively encapsulate the redshift kernel of the
signal, where the lensing geometric kernel can be seen in the shear
case — the effect being a distance-weighted integral along the line of
sight, and a localized delta-function in the intrinsic alignment case.
D(z) is the linear growth factor.

Uhttp://camb.info version 2012.
2 This is to be consistent with the Kitching et al. (2014) analysis, although
we do not actually vary the dark energy equation of state in this paper.
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2.2 Implementation

The above formalism is coded in a software 3prast?, which was
used in Kitching et al. (2014). In this paper we present an improved
analysis, as a result of software and hardware improvements used
for the cosmological parameter inference. The main result of this
is an increase in the number of ¢ and k£ modes available for the
analysis. In Kitching et al. (2014) 164 independent angular modes
were used. In this paper this is increased by a factor of 10-1640
independent £ modes over the range £,,;, = 360—4970. In the radial
direction we use 50 k-modes linearly sampled between 0.001 and
5h Mpc" , for each £ mode. We choose ky,.x =5h Mpc" to avoid
the extremely non-linear regime of less than a few hundred kilopar-
secs in comoving separation (see Section 1). This leads to 82 000
modes measured from the data, and 4.1 x 10° modes to be mod-
elled in the covariance®. This choice of angular modes avoids large
scales, of more than 1 deg. For the spherical-Bessel shear transform
our £-mode selection corresponds an angular range of 4-60 arcmin;
and this mapping from ¢-mode to real-space angle is unaffected by
the choice of k modes due to the orthogonality properties of the
spherical-Bessel transform. On scales larger than this Asgari et al.
(2016) use a correlation-function approach (COSEBIs), and map a
k-mode and redshift-dependent angular range on to ¢, finding that
£ = 360-5000 in that analysis corresponds to 40—100 arcmin, and
in doing so find a signature of B modes in the CFHTLenS data over
those configuration-space angular scales. We avoid such scales in
this analysis, and note that a full comparison between COSEBIs
and spherical-Bessel weighting requires further investigation.

To test the implementation we use the CFHT N-body CLONE
simulations (Harnois-Déraps, Vafaei & Van Waerbeke 2012). These
simulations were made assuming a flat ACDM cosmology with pa-
rameters Qy = 0.279, Qg = 0.046, ny, = 0.96, h = 0.701, and
og = 0.817. Whilst not being fully 3D simulations, they are finely
binned in redshift with 26 bins over the range z = 0-3. In each
redshift bin the matter density is projected on to a 2D plane. There
are 184 independent lines of sight, wherein each one weak lensing
shear information is generated via ray tracing through the simula-
tions. Importantly these simulations have realistic masking, and are
tailored to mimic the survey number density, geometry, and noise
properties of the CFHTLenS survey, which is the data set we use
in this paper. The presence of the realistic masks means that the
pseudo-C, mask-correction can be tested. In addition we supple-
ment the CLONE simulations with realistic photometric redshift
posterior probabilities: we take the photometric redshifts posterior
probabilities from CFHTLenS, and then assign a posterior to each
CLONE galaxy with the appropriate mean redshift; the best es-
timated photometric redshift is then resampled from the assigned
posterior. In Fig. 1 we show the result of applying the current im-
plementation to the simulations where we split the available lines of
sight, each of 12.84 deg?, into groups of 12 that are approximately
the same total area as the CFHTLenS survey, which is 154 deg?
(this leaves a remainder of four simulations, lines-of-sight 180—
184, which we do not use), to create simulated data of the same size
as used in this paper. We show the 2-parameter likelihood contours
in the (os, QM) plane, marginalized over Qg, 4, and n, in a flat
ACDM cosmology (see Section 2.4). We find that the likelihood
analysis recovers the input cosmology in all cases.

3 The code is available here: https:/github.com/tdk111/3dfast.

4The current implementation of 3DFAST can compute one covariance
matrix for this data set in ~10 s on node 36 of this machine:
http://hipatia.ecm.ub.es/ganglia/.

9102 ‘T AInc uo Areuqi uopuo abs|j0D [eladw | e /H10'Sjeulno piojxo'seluw//:dny wody papeojumoq


http://camb.info
https://github.com/tdk111/3dfast
http://hipatia.ecm.ub.es/ganglia/
http://mnras.oxfordjournals.org/

I°g10 MII‘

Discrepancies between CFHTLenS shear and Planck 975
Simulations, kmaX=5.0h/Mpc
1.2
“ AN ~— 2-sigma
, N 1-sigma
6 1F 0 \\ % Input Cosmology
8 08l X
0 e RS
12 S o
0.4 -
-14
0.2
N -16
3000 4000 0.2 0.4 0.6 0.8

1000

2000
I-mode

Figure 1. Left-hand panel: a typical mask in the CLONE simulations (from the line-of-sight 1, showing 12.84 deg?), where yellow are the masked regions
that simulate stellar masks. Middle panel: a typical derived mixing matrix from the simulations, where we use a maximum ¢-mode of 4000. Right-hand panel:
the mean lo (dashed) and 20 (dot—dashed) contours averaged over all the simulations in the (o'g, €2\) plane, compared to the input cosmology (the red cross).
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Figure 2. The real and imaginary parts of the transform coefficient data vector (blue and green points, respectively) as a function of k mode for a selection of
the 1640 ¢-modes used in the analysis, compared to the diagonal part of the expected pseudo-C; covariance matrix which is a sum of the noise part (solid lines)
and the signal part (dashed lines). The rightmost panels show the mean over all £ modes used in the analysis. The top panels show this for the CFHTLenS W1

field, the bottom panels show this for the CLONE simulations line-of-sight

2.3 Data

The data we use are the CFHTLenS data (Erben et al. 2013; Hey-
mans et al. 2013), which is a 154 deg® optical survey (over four
fields W1, W2, W3, W4) in ugriz bands, with weak lensing shape
measurement (Miller et al. 2013) and photometric redshift posterior
probabilities (Hildebrandt et al. 2012). We use the publicly avail-
able catalogues, and remove those fields that have been assessed
to be unsuitable for cosmic shear analysis (Heymans et al. 2013)
using star—galaxy cross-correlation statistics. This is the same data
set that was used in Kitching et al. (2014).

We follow Kitching et al. (2014) in selecting only photometrically
identified early-type galaxies for our analysis that are expected to
have small intrinsic alignment contamination. For example, Man-
delbaum et al. (2011) found a null intrinsic alignment signal in the
WiggleZ data whose selection function resulted in a galaxy sample
that is similar to that of CFHTLenS. In addition the linear alignment
model that we use is only expected to be appropriate for early-type
galaxies (see e.g. Joachimi et al. 2015).

In Fig. 2 we show the real and imaginary measured transform
coefficients (equation 1) for a selection of £ modes as a function of
k mode, and also the predicted diagonal of the pseudo-C covariance
Cy(k, k) (equation 6), for the CFHTLenS W1 field. We also show
the same plot for one of the simulations used to test the pipeline.

1.

Because the data we use is a 1-point estimator, and the covariance
that contains the cosmological information is analytic, there is no
need to estimate the covariance matrix from simulations (see e.g.
Taylor, Joachimi & Kitching 2013). The primary assumption in the
likelihood analysis is that the likelihood function is Gaussian, i.e.
that the shear transform coefficients are Gaussian distributed. As
shown in Kitching et al. (2014) this is a good approximation for
the CFHTLenS data. This is also expected from the central limit
theorem because if each galaxy has a posterior probability for the
observed ellipticity p,(e) * p(y) (where * is a convolution) then
the probability distribution of the shear transform coefficients, via
equation (1), will be p(e¢[k]) = ®g[pg(e) * p(y)]jelkr)e ¢ ie.
where ®g is a series convolution over all galaxies weighted by
the spherical-Bessel function, which through the central limit is
expected to result in a Gaussian distribution.

2.4 Model parameters

The model parameters that we fit to the data consist of three parts
that capture the cosmological model, the baryonic feedback model,
and the parameters for photometric redshift systematic effects. We
adopt as the baseline, the set of cosmological parameters of the flat
ACDM model: 2y, g, and Q2pg, the dimensionless densities of

MNRAS 459, 971-981 (2016)

910z ‘T AInC uo AReiqi] uopuo abe|(0D) eLedw | e /610°'Seulnolplo xo seluw//:dny Wo.) pepeoumoq


http://mnras.oxfordjournals.org/

976  T. D. Kitching et al.

matter, baryons, and dark energy, respectively, where we always
assume a flat geometry i.e. that Qpg = 1 — Qy; the dark energy
equation of state parameter w, that we assume to be constant with
redshift; the spectral index of the initial density perturbations ns;
the dimensionless Hubble parameter 1 = Hy/(100kms™! Mpc™');
the variance of matter perturbations on 84~! Mpc scales, o'g; and the
total sum of neutrino masses, m, for which we assume an inverted
hierarchy throughout (the results are not sensitive to the choice of
hierarchy for a data set of this size). In our investigations we will
use the Planck Collaboration XVI (2014) best-fitting parameters to
fix any cosmological parameters that we do not explicitly vary in
the analysis, and all other parameters not listed here are also fixed
at these values. Beyond the cosmological parameters we consider
‘systematic’ parameters (variables that parametrize systematic ef-
fects). We include the intrinsic alignment parameter Ajs as a free
parameter, where we use the non-linear power spectrum in the lin-
ear alignment model; this is an ad hoc modelling of small-scale
intrinsic alignment behaviour (see Blazek, Seljak & Mandelbaum
2015; Joachimi et al. 2015) but is a good empirical fit to galaxy—
galaxy lensing data. For other systematic parameters we focus only
on those that are most likely to have an impact on small scales.
These are the impact of photometric redshifts, because photomet-
ric redshifts damp power and correlated k-modes on small radial
scales less than the redshift error i.e. kK = 27 /[30000,(z)], where
30000 ,(z) is approximately the comoving distance error caused by
photometric redshift uncertainties at a redshift of unity (see Kitch-
ing et al. 2011, where this is explored in more detail), and baryonic
feedback processes that can impact scales of k > 17 Mpc™' (see
Section 1).

2.4.1 Photometric redshift systematics

As shown in Choi et al. (2015) there is evidence from galaxy—
weak lensing cross-correlations that the photometric redshifts in
CFHTLenS are biased with respect to their (true) spectroscopic
redshifts. We find that their bias as a function of spectroscopic
redshift is well-parametrized by a linear relation; we estimate this
relation from their tabulated results to be zpi,s(zs) = p2(z — p1)s
where p, = —0.19 + 0.05 and p; = 0.45 £ 0.05. To model the effect
of possible redshift biases we include this redshift bias function
in our analysis by shifting the CFHTLenS photometric redshift
posterior distributions by this factor in equation (10), p(z|zp) —
p(Z' — Zbias|zp) and letting p; and p, be free parameters, which to
first order is a shift in the mean of the function.

With more data, a more complex bias function could be explored,
but the limited statistical power of this data set does not warrant this.
As shown in Kitching et al. (2014) the CFHTLenS data set is not
large enough to support parameter estimation over more than ~4-5
well-constrained free parameters.

2.4.2 Baryonic feedback models

We start by using the results from the OWLS (Schaye et al. 2010; van
Daalen et al. 2011), a suite of large, cosmological, hydrodynamical
simulations, which include various baryonic processes including
AGN feedback, supernovae feedback, cooling etc. Their code uses
a TREEPM algorithm to efficiently calculate the gravitational forces
and smoothed particle hydrodynamics to follow and evolve the
gas particles. The authors provide the matter power spectrum as a
function of wavenumber k and redshift z, P(k, z) (linking to equation
11 here we use P(k, z) as a shorthand for P(k; r[z]) where r(z) is the
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comoving distance at redshift z), for the same cosmology but with
nine different baryonic effects or ‘recipes’; their description can be
found in table 1 of van Daalen et al. (2011; note that entries 2, 5, 6
are relative to a different cosmology and so will not be considered
here). The large volume of the simulations means that the lowest
k mode sampled is 0.1 2 Mpc™', reaching the (quasi)linear regime
where baryonic effects are fully negligible.

In Zentner et al. (2013) the authors quantified the impact of
baryonic effects on the convergence power spectrum using principal
component analysis (PCA; see e.g. Jolliffe 1986) and found that the
first two eigenmodes account for over 90 per cent of the variance
among the spectra. Here we aim at using the same approach but for
the matter power spectrum itself as a function of k and z.

To minimize the dependence on cosmology, we choose to model
the relative change induced by the baryonic effects compared to a
dark matter-only (DM ONLY) recipe; therefore we work with the
quantity R = P;(k, z)/Ppmonvy (k, z), where i stands for the various
baryonic recipes. We also only consider the redshift range relevant
for the present analysis i.e. 0.125 <z < 1.5.

The PCA approach describes R in terms of eigenvectors and
eigenvalues:

R = Ryean(k, 2)+ Y Vik, 2)E;, (15)
i=1,9

where R., is the mean correction (the PCA-inferred mean effect
of all the models considered), V; are the eigenvectors, and &; are the
eigenvalues. We find that the second term in the right-hand side of
equation (15) is of the same order of R.,, it cannot be neglected,
but cannot change Ry., by a large factor. Our philosophy then
follows Eifler et al. (2015). We describe the matter power spectrum
as

P(k,z) = Pomonry(k, DR (k, 2), (16)

with

Ra(k, 2) = Ruean(k, 2) + > Vilk, D), (17)
i=1,N

where Rpean and V; are provided by the PCA procedure (equation
15 above) and E; their coefficients (to be determined by the data
analysis). The PCA provides N = 9 eigenvectors but, as we shall see
below, the first one or two already encode all the information one
is interested in in this context. We then aim at marginalizing over
the coefficients of the dominant eigenmodes. In doing so we make
two fundamental assumptions here: (1) that the set of nine recipes
encompasses all reasonable functional shape of the corrections (but
not necessarily the amplitude) and therefore that the set of eigen-
modes that the PCA analysis will yield will be a full basis set for
the baryonic effects (not just a full basis set for the OWLS simula-
tions); (2) that on scales larger than the largest scales modelled by
the simulations the baryonic effects are negligible and therefore the
relative effect is 0. We will completely relax the first assumption
below.

We find that using only one PCA coefficient keeps the residuals
below 0.5 per cent for k < 0.5 Mpc™! and below 1.2 per cent
for k < 1h Mpc™'; using the first two PCAs keeps the residuals
below 0.1 per cent for k < 0.5 2 Mpc~'. Using no PCA coefficients,
only the mean correction, we find residuals below 0.8 per cent
for k < 0.5h Mpc™! and below 2.5 per cent for k < 1. Since
Riean and Vi are of about the same magnitude this means that the
differences among the models are at least as big as the effect itself.
The recipe therefore would be to set the mean correction and the
first PCA eigenvector, leaving its amplitude a free parameter. One
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Figure 3. Comparison of OWLS and Illustris simulations’ predictions for
the baryonic effects on the matter power spectrum R = P(k)/Ppmonry (k)
at z = 0. OWLS mean correction (i.e. Ryean in equation 15): upper red solid
line; Illustris: lower black solid line; OWLS mean correction scaled by a
factor of 7: dashed line.

would expect the recovered parameter value not to be much larger
than unity for the modelling adopted to be valid.

To relax our first assumption above, we next test if this PCA
description of the baryonic effects on the matter P(k) shape can
describe the effects found by an independent set of simulations. We
use the Illustris simulation (Nelson et al. 2015) which incorporates
a broad range of astrophysical processes that are believed to be
relevant to galaxy formation (gas cooling, energy feedback from
black holes, supernovae, AGN). While gravitational forces are cal-
culated using a TREEPM scheme as in OWLS, the hydrodynamics are
modelled by the moving-mesh technique (see Nelson et al. 2013).
In particular we refer to fig. 5 of Vogelsberger et al. (2014). We
find that the relative effect of baryons on the matter power spec-
trum, R, at z = 0 is seven to eight times larger than it is in the
mean of the OWLS effects at the same redshift. While OWLS had
nine baryonic recipes, in our PCA-based representation they are de-
scribed by ~few per cent eigenmodes around a ‘mean’ correction
of ~3 per cent at low redshifts at k ~ 1 # Mpc™' (up to 8 per cent
at higher k). Illustris on the other hand presents only one model at
z = 0 with |[R — 1] ~ 20 per cent at k < 1 & Mpc~'(up to more
than 35 per cent at larger k). No reasonable values of the OWLS-
extracted PCA coefficients could reproduce such an effect; even the
AGN model in van Daalen et al. (2011) gives only a ~10 per cent
suppression at k ~ 2 h Mpc~'. We therefore (also) explore a model
that can interpolate between the two simulations by adding a free
parameter that rescales the mean correction for OWLS. This is illus-
trated in Fig. 3 where the power spectra ratio R at z = 0 are shown
for the Illustris simulation, the mean correction from OWLS, Rcan
in equation (15), and this correction rescaled by a factor of 7. The
resulting form of the function that we fit to the data is

R=1+ [Rmeau(ks Z) - l]El + V](k, Z)EZs (18)

where E| and E, are free parameters, and the resulting range of the
variation in the function can capture both the OWLS and Illustris
behaviour.> Schneider & Teyssier (2015) also present an inves-
tigation of baryonic feedback behaviour, whose power spectrum

3 The PCA data and code to read in and manipulate the functions is available
here: https://github.com/tdk111/baryonmodel.

suppression again requires components of order two: a suppression
amplitude, and k-range at which that suppression begins to affect the
power spectrum; however we have not tested our ability to recover
their results.

3 RESULTS

We vary the free parameters in our analysis, and estimate their pos-
terior probability distributions using a Metropolis—Hastings MCMC
(Markov chain Monte Carlo) chain with a proposal distribution that
is determined using the Fisher matrix of the parameters involved
(the Fisher matrix is defined in Kitching et al. 2011). We do not
assume any priors on our parameters in the analysis, except very
wide boundaries to prevent the MCMC chains from moving into
unphysical parameter areas, these are Qy > 0, g > 0, h > 0,
|Aia] < 100.

For illustration of the tension, in Fig. 4 we show the projected 1o
and 20 contours in the (og, 2)) plane using maximum k-modes of
1.5hMpc~" and 5 Mpc~! in the analysis. Note that in this figure all
other cosmological parameters are fixed at the base ACDM Planck
best-fitting values and the systematic parameters are at their fiducial
values (no intrinsic alignment, no baryonic effects, no photo-z bias).
This is compared to the Planck constraints® in the same plane. It
can be seen that for (quasi-) linear scales the data is fully consistent
with the Planck data. However there is a tension at small scales.
The constraints are slightly broader than those expected from the
simulated data (Fig. 1); this is because the power spectrum signal-
to-noise is lower than expected due to the lower og value.

To investigate what could be causing the tension with the Planck
constraints in the (og, Q2)) plane we fixed the ACDM parameters
at the Planck maximum likelihood values, and then only varied
the additional parameters in our analysis to gauge if non-canonical
values of them can explain this tension, thereby placing Planck
ACDM-conditional constraints on these parameters. The additional
parameters are the intrinsic alignment amplitude A4, the sum of the
neutrino masses m,, the two baryonic feedback parameters E; and
E,, and the two photometric redshift bias parameters p; and p;.
These parameters are all varied simultaneously in the fitting, except
where we explicitly fix the intrinsic alignment amplitude to be zero.
By fixing all other ACDM parameters, including og and Qy, we
infer the values of the additional parameters conditional on the
Planck cosmology being correct.

In Fig. 5, and tabulated in Table 1, we show the projected con-
straints on each of these parameters for two cases, one where we
have left the intrinsic alignment amplitude to be a free parameter
in the fit, and secondly where we have fixed the intrinsic alignment
amplitude to be zero. It can be seen that the data favours a very nega-
tive intrinsic alignment amplitude parameter if allowed to. This is an
unphysical regime for this parameter — which should be positive if
early-type galaxies are radially aligned to local dark matter overden-
sities, and cause a suppression in the cosmic shear power spectrum.
In this analysis we also find a large photometric redshift bias, which
is consistent with, but slightly more pronounced than, the results
from Choi et al. (2015) which come from an entirely independent
analysis of the photometric redshifts themselves. We also find that a
non-zero neutrino mass (conditional on all other ACDM parameters
being fixed) is not favoured by the data, with the analysis setting an
upper limit of m, <0.28 eV (1o), which is in agreement with other

SWe use the Planck Legacy Archive chain: PLA/base/planck_lowl/
base_planck_lowl_1.txt.
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Figure 5. Projected 1o, 20, and 30 parameter constraints for the additional parameters the intrinsic alignment amplitude A4, the sum of the neutrino masses
m,, the two baryonic feedback parameters £ and E», and the two photometric redshift bias parameters p; and p». In this analysis we use kmax = 5h Mpc_l.
The red contours allow for a free intrinsic alignment amplitude, and the blue contours fix its value at zero. The vertical black solid and dashed lines are at
A1a = 0 and —10, respectively, for reference. Cosmological parameters are set at Planck best-fitting values.

recent cosmological constraints (e.g. Gonzalez-Morales et al. 2011;
Verde et al. 2014; Cuesta, Niro & Verde 2015). In Figs 5 and 6 we
also show the case that the intrinsic alignment amplitude is fixed to
zero. This is a more physical case, as there is no strong evidence
for intrinsic alignments in the early-type galaxy sample that we use
in our analysis (see e.g. Mandelbaum et al. 2011; Joachimi et al.
2015). We again find that the neutrino mass is consistent with zero
in this case. In Fig. 6 we show the best-fitting baryonic feedback
parameters in this case, we find consistency with no baryonic feed-
back at all, and a tight upper limit (at 68 per cent) of 1.5 per cent,
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at k = 5h Mpc~'. The amplitude of the E| parameter indicates that
the mean correction must be smaller than half of that predicted by
OWLS simulations and is very far from that predicted by Illustris.
This can be understood by considering equation (18). For the OWLS
case E; should be 1 (see equation 15). For recovering the Illustris
suppression E; should be ~7 and E; should be small (see Fig. 3);
E; < 1 implies a mean correction (i.e. a mean fractional correction
to Ppymonty) smaller than in the OWLS case.

Providing a x2 goodness of fit estimate is not possible for
our method; this is because we first vary the covariance in the
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Table 1. The mean and lo error of the parameter constraints from
CFHTLenS using the 3D cosmic shear method, assuming all other parame-
ters are fixed at the Planck Collaboration XVI (2014) maximum likelihood
values.

Intrinsic alignment Parameter Mean £ lo

Free Ala —113 £ 59

Free m,/eV 0.13 £ 0.15

Free E; —0.06 £ 0.09 Baryon model
Free E> 0.00 £ 0.02 Baryon model
Free P1 0.27 £ 0.06 Photometric bias
Free P2 —0.29 £ 0.07 Photometric bias
Zero my,/eV 0.14 £ 0.12

Zero E, 0.06 £+ 0.15 Baryon model
Zero E> 0.00 £+ 0.02 Baryon model
Zero P1 0.26 £+ 0.05 Photometric bias
Zero P2 —0.25 £ 0.06 Photometric bias

likelihood not the mean, and the variance will just adjust as
required; therefore a Bayesian evidence calculation is required
to test models correctly, but in order to implement such a test
more code development of 3DFAST is required. In the meantime
here we quote the likelihood values at the best-fitting Planck
cosmology for the three cases we investigate (ACDM, ACDM-
fixed-Ajs free, and ACDM-fixed-Ajs zero) that are indicative of
level of change in information content in the fits. These are
In (L|Planck)acpm = 17 603, In(L|Planck) scpm—a,—free = 17 607
and In(L|Planck)acpm—ag,—zero = 17 603. These are as expected,
higher for the Ajs case and lower for the other two cases.

The results we present are consistent with those found in Bat-
tye et al. (2015), MacCrann et al. (2015), Dossett et al. (2015),
and Joudaki et al. (2016) who all investigated the CFHTLenS—
Planck constraints. Joudaki et al. (2016) most recently found the
CFHTLenS data to prefer a large and negative intrinsic alignment
amplitude, a small baryonic component, and a small photometric
redshift bias. A further complicating factor for correlation-function
methods is the mapping of the kernel to k-space, which is more
complex than for the spherical-Bessel transform. MacCrann et al.
(2015) show the kernel for a fixed redshift, and Asgari, Schnei-
der & Simon (2012) and Asgari & Schneider (2015) show that
the angle-to-¢ mode mapping can be complicated for a COSEBI
weighting. A full investigation of the correlation-function k-mode
sensitivity is yet to be done. However, using the Bessel function
relation, appropriate for the spherical-Bessel transform used in
this paper, €pnax =~ kmax?[z], the range of k-modes we probe ap-
proximately corresponds to a redshift-dependent minimum angular
scale of @ yin[z] = 360/ (kmax7z]), Which for kpa = 1.5h Mpc™! is
Ominlz] = {17, 4, 3} arcmin for z = {0.2, 1.0, 1.2}. On the large
scales the maximum angular range is also affected by the Limber
function assumption, which is only applicable for £.;, = 200 (or
Omax < 100 arcmin; Simon 2007; Loverde & Afshordi 2008), used
in the theoretical interpretation of these papers’ results, which we
do not assume in our analysis.

The bias on photo-z obtained in Fig. 6 is similar in amount and
redshift dependence to the estimated one by Niemack et al. (2009).
These authors constructed different estimators of photo-z for dif-
ferent wavelength coverage and stellar populations models. They
found that lack of inclusion of ultraviolet filters resulted in a bias
on the photo-z estimated redshift. In particular, comparison of their
upper panel fig. 4 with our estimated photo-z bias shows a strong re-
semblance over the applicable redshift ranges. The photometric bias
result is robust to assumptions about the intrinsic alignments. In all

cases we find that the neutrino mass constraints are unchanged, and
the baryonic feedback model is consistent with zero. Furthermore
as shown in Kitching et al. (2014) the ability of the CFHTLenS
data to constrain any more than a handful of parameters is limited.
Therefore simultaneously varying ACDM parameters and photo-
metric redshift bias would result in very broad, and inconclusive,
parameter constraints that we do not show in this paper.

For comparison with other surveys’ cosmic shear results we note
that other recent cosmic shear results are not in tension with Planck.
In particular the Deep Lens Survey (DLS; Jee et al. 2013, Jee
et al. 2015), and the Dark Energy Survey (DES; The Dark Energy
Survey Collaboration et al. 2015) both find cosmic shear results
(using correlation-function methodology for DLS, and correlation-
function and band-power methods for DES) that are consistent with
the Planck results. An alternative explanation for the CFHTLenS
discrepancy is discussed in Liu, Ortiz-Vazquez & Hill (2016) who
claim that a residual magnitude-dependent multiplicative bias can
alleviate the tension.

It is interesting to note that of all the models we investigate for
baryonic feedback in this paper, only OWLS AGN reproduces the
gas fractions inferred from X-ray observations of clusters (see e.g.
McCarthy et al. 2010). The other OWLS gas fractions are too high,
while Illustris gas fractions are too low. As shown in Semboloni
et al. (2011) using a halo model, the gas fractions are likely to
determine the large-scale effect on the power spectrum; the smaller
the gas fraction, the greater the suppression of the power spectrum
on large scales (Schaye, private communication).

Therefore a suppression much smaller than that seen in the OWLS
AGN output may be hard to reconcile with the X-ray observations
of clusters. This means that the real tension may now be between
cosmic shear and Planck constraints, and those from X-ray obser-
vations.

4 CONCLUSIONS

In this paper we present constraints using 3D cosmic shear, where
the 3D power spectrum of weak lensing data is used to perform
cosmological parameter inference. We improve this method over
previous implementations by increasing the wavenumber resolution
by a factor of 10. We also test this method, in particular the pseudo-
C, aspect that accounted for survey masks, by applying the method
to the CFHT CLONE simulations. We demonstrate that we recover
the input cosmology of these simulations that have a realistic mask,
and galaxy properties similar to the CFHTLenS data. We then apply
this method to the CFHTLenS data, as was done in Kitching et al.
(2014) and recover the result of that paper: that on linear scales k <
1.5 hMpc~! the constraints are consistent with the Planck parameter
constraints, but that on non-linear scales of k < 5h Mpc" there is
a mild tension with the Planck data in the (o'g, 2m) plane.

To investigate this tension we extend the cosmological mod-
elling in four ways, each of which may account for an apparent
drop in power at high-k, compared to ACDM. First we develop a
model-agnostic baryonic feedback approach and apply this to the
OWLS and Illustris simulations. This extracts the impact of bary-
onic feedback on the matter power spectrum using a PCA method;
this is complementary to more analytic physically-motivated mod-
els (such as those presented in Semboloni et al. 2011; Fedeli 2014;
Mead et al. 2015) but that are not guaranteed to capture all be-
haviour efficiently from simulations. This results in two additional
parameters that describe potential matter power spectrum suppres-
sion as a function of redshift and scale. The second way we extend
the method is to include intrinsic alignment modelling. For this we
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Figure 6. The best-fitting functional forms for the baryonic feedback model parameters and the photometric redshift bias parameters. For the baryonic feedback
model we show the suppression for three representative redshifts. For the photometric redshift bias we also show the Choi et al. (2015) data points (crosses)
and the best-fitting linear relation for these (red line). The solid blue line in the right-hand panel is the best fit from the cosmic shear constraints, and the dashed
lines are the 1o confidence regions. The legend denotes the redshifts in the left-hand panels, where the solid lines are the best functions and the dashed lines
are the 1o confidence regions. The lower panels show the results for the case that the intrinsic alignment amplitude is a free parameter (which maximises at
Ara >~ —11). The upper panels show the case in which the intrinsic alignment amplitude is set to zero.

use the linear alignment model of Hirata & Seljak (2004) with the
ansatz of using the non-linear power spectrum. Thirdly we include
a possible redshift-dependent photometric redshift bias. For this we
use a linear form to minimize the number of free parameters, result-
ing in two additional parameters; however any functional form or
binning in redshift could be used. Finally we include neutrino mass
as an additional cosmological parameter.

We apply 3D cosmic shear to the CFHTLenS data varying the ad-
ditional parameters. With the caveat that for computational reasons
we keep all other parameters fixed at the Planck best-fitting values
(although this is unlikely to be a significant issue since Planck er-
rors are much smaller than those from CFHTLenS). We find that
when the intrinsic alignment amplitude is allowed to vary as a free
parameter the data favours a large and negative value. This is prob-
ably unphysical: the intrinsic alignment function is being used to

MNRAS 459, 971-981 (2016)

boost the cosmic shear power, rather than suppress it as expected
if tidal effects align galaxies radially near mass concentrations. In
this case we also find a negligible suppression of the matter power
due to baryonic feedback modelling, a large photometric redshift
bias, and a small neutrino mass <0.28 eV. If we restrict the intrinsic
alignment amplitude to be zero, which is consistent with galaxy—
galaxy lensing measurements for the early-type galaxy sample we
use in our analysis (see Mandelbaum et al. 2011; Joachimi et al.
2015), then we also find that the data favours a model in which there
is little or no suppression of power caused by baryonic feedback
effects and a large photometric redshift bias.

Conditional on the Planck best-fitting cosmology, and further un-
accounted for systematics in the CFHTLenS data, these results rule
out the baryonic feedback models in OWLS with AGN and Illustris
simulations at high significance. We find this result is robust to the
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amplitude of the intrinsic alignment signal and neutrino mass. To
summarize: assuming Planck best-fitting cosmological parameters,
our 3D weak lensing analysis of CFHTLenS weak lensing data
shows no evidence for either non-zero neutrino masses or baryon
feedback. For physically reasonable intrinsic alignments, the data
indicate a significant bias in the CFHTLenS photometric redshifts,
which is very similar to, and consistent with, findings of Choi et al.
(2015) based on an entirely different argument from comparison
with spectroscopic samples. When this bias is accounted for, the
evidence for baryon feedback goes away.

In assessing cosmological large-scale-structure statistics, the crit-
ical methodological factor is the ability of methods to probe cleanly
defined ranges of physical scales in the analysis. This is particularly
crucial in cosmic shear analyses where several poorly understood
systematic and astrophysical effects can have a large impact, and
where there is potentially a wealth of cosmological information.
The 3D cosmic shear approach taken in this paper can separate
scales in this manner, and in addition works in the correct geome-
try for the data. Future optimization of this approach will improve
these aspects further allowing for robust scale-dependent tests of
cosmology and astrophysics and, as the volume of weak-lensing
surveys increases in size (O(1000) deg®) and depth significantly
beyond the CFHTLenS data, we envision that a clear signature of
neutrino physics will be unveiled in the sky (Jimenez et al. 2010).
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