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Relativistic eikonal description of A( p, pN) reactions
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The authors present a relativistic and cross-section factorized framework for computing quasielastic A(p, pN )
observables at intermediate and high energies. The model is based on the eikonal approximation and can
accommodate both optical potentials and the Glauber method for dealing with the initial- and final-state
interactions (IFSI). At lower nucleon energies, the optical-potential philosophy is preferred; whereas at higher
energies, the Glauber method is more natural. This versatility in dealing with the IFSI allows one to describe
A(p, pN ) reactions in a wide energy range. Most results presented here use optical potentials, as this approach
is argued to be the optimum choice for the kinematics of the experiments considered in the present paper.
The properties of the IFSI factor, a function containing the entire effect of the IFSI, are studied in detail.
The predictions of the presented framework are compared with two kinematically different experiments. First,
differential cross sections for quasielastic proton scattering at 1 GeV off 12C, 16O, and 40Ca target nuclei are
computed and compared to data from Petersburg Nuclear Physics Institute (PNPI). Second, the formalism is
applied to the analysis of a 4He(p, 2p) experiment at 250 MeV. The optical-potential calculations are found to be
in good agreement with the data from both experiments, showing the reliability of the adopted model in a wide
energy range.
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I. INTRODUCTION

Quasielastic nucleon knockout reactions have been
extensively investigated with the aim of obtaining precise
information on nuclear structure. The present work focuses on
exclusive proton-induced A(p, 2p) and A(p, pn) processes,
whereby the residual A − 1 nucleus is left in the discrete part
of its energy spectrum. A sketch of the A(p, 2p) reaction
is given in Fig. 1. For a historical overview of the research
into proton-induced nucleon emission off nuclear targets, the
reader is referred to Refs. [1–3].

In quasielastic A(p, pN ) scattering, the projectile is
elastically scattered from a single bound nucleon in the target
nucleus, resulting in the struck nucleon being knocked out of
the target nucleus. This relatively simple reaction mechanism
of one “hard” nucleon-nucleon collision is obscured by
the “soft” initial- and final-state interactions (IFSI) of the
incident and two outgoing nucleons with the nuclear medium.
Consequently, every model for A(p, 2p) and A(p, pn)
reactions has two issues to address: first, the description of
the hard wide-angle scattering that leads to the ejection of the
struck nucleon, second, the distorting mechanisms of the soft
small-angle IFSI.

Concerning the treatment of the hard NN scattering part,
essentially two methods exist. A so-called cross-section
factorized approximation [1,4] can be adopted so that
the nucleon-nucleon scattering cross section enters as a
multiplicative factor in the differential A(p, pN ) cross section.
Some results of exclusive A(p, 2p) measurements inter-
preted with this cross-section factorized form can be found
in Refs. [5–10]. The inclusion of spin-dependence in the
description of IFSI, however, breaks this factorization scheme.
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In that situation, an alternative technique can be used: the
amplitude factorized form of the cross section [11]. In this
approach, the two-body NN interaction can be approximated
by the interpolation of phase shifts [12] from free elastic
NN scattering. Various phenomenological forms to fit the
amplitudes have also been used in the past. Traditionally, the
nucleon-nucleon scattering matrix has been parametrized in
terms of five Lorentz invariants [13–15], a method usually
dubbed as the IA1 model or the SPVAT (scalar, pseudoscalar,
vector, axial vector, tensor) form of the NN scattering matrix.
Differential cross-section calculations adopting these five-
term representations have been reported in Refs. [16–20]. It
should be noted, however, that although the SPVAT form
gives reasonable predictions of A(p, pN ) observables, it
is, in principle, not correct, as a five-term parametrization
of the relativistic NN scattering matrix is inherently am-
biguous [21]. Tjon and Wallace [22] have shown that a
complete expansion of the NN scattering matrix (commonly
called the IA2 model) contains 44 independent invariant
amplitudes. To date, the only calculations employing this
general Lorentz invariant representation have been performed
in the context of the relativistic plane wave impulse ap-
proximation (RPWIA), i.e., a model which ignores all IFSI
mechanisms [23].

The IFSI effects are typically computed by means of the
distorted wave impulse approximation (DWIA) theoretical
framework [3,4,11,24]. Generally, in a DWIA approach,
the scattering wave functions of the incoming and two outgoing
nucleons are generated by solving the Schrödinger or Dirac
equation with complex optical potentials. Parametrizations
for these optical potentials are usually not gained from
basic grounds, but are obtained by fitting elastic nucleon-
nucleus scattering data. Several optical-potential parameter
sets [9,25–31] have been used in the description of quasifree
proton scattering off nuclei. In the past, both nonrelativistic
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FIG. 1. Schematic representation of the A(p, 2p) reaction. The
incoming proton undergoes “soft” initial-state interactions with the
target before knocking out a bound proton through the primary high-
momentum-transfer pp scattering, Both the scattered and the ejected
proton suffer final-state interactions while leaving the nucleus. The
scattered and ejected protons are detected in coincidence, while the
residual nucleus remains unobserved.

and relativistic DWIA versions [5,6,8–10,16–20,32–36] have
proven successful in predicting A(p, pN ) cross sections over
a wide energy range (76–600 MeV) and for a whole scope of
target nuclei.

Most of the available calculations for the exclusive
A(p, pN ) process addressed incident proton kinetic energies
of a few hundred MeV. In this work, we aim at extending
the formalism to scattering in the GeV energy regime. As
a matter of fact, the majority of DWIA frameworks rely
on partial-wave expansions of the exact solution to the
scattering problem, an approach which becomes increasingly
cumbersome at higher energies. In this energy range, the
eikonal approximation [37,38], which belongs to the class of
high-energy semiclassical methods, offers a valid alternative
for describing IFSI. Nonrelativistic eikonal studies of the
A(p, 2p) reaction used in combination with optical potentials
can be found in Refs. [1,5,7].

In this paper, we propose a relativistic and cross-section
factorized formalism based on the eikonal approximation
for computing exclusive A(p, pN ) cross sections at incident
proton energies in the few hundred MeV to GeV range. The
eikonal formalism is implemented relativistically in combi-
nation with optical potentials [31], as well as with Glauber
theory [39–41], which is a multiple-scattering extension of
the eikonal approximation. The two frameworks only differ
in the way they treat the IFSI. The main focus will be on the
optical-potential approach, as this method turns out to be the
most suitable for the description of IFSI for the kinematical
settings discussed in this work.

The paper is organized as follows. In Secs. II A and
II B, the factorized cross section is derived in the RPWIA
formalism. Thereafter, the different methods to deal with
IFSI are developed in Sec. II C. Section III is devoted to a
presentation of optical-potential and Glauber results for the
IFSI factor. This is a function that accounts for all IFSI effects
when computing the A(p, pN ) observables. The optical-
potential predictions of our model are compared in Sec. IV,
with cross-section data that have been collected at Petersburg
Nuclear Physics Institute (PNPI) and (TRIUMF). First, we

present our calculations for the 12C, 16O, and 40Ca(p, 2p)
and (p, pn) PNPI data for 1 GeV incoming proton energies
[42]. Second, the cross sections for 4He(p, 2p) scattering at
250 MeV are compared to the TRIUMF data of van Oers
et al. [9]. Finally, Sec. V states our conclusions.

II. A( p, 2 p) FORMALISM

In this section, the formalism for the description of A(p, 2p)
reactions is outlined. The generalization to A(p, pn) reactions
is straightforward. We conform to the conventions of Bjorken
and Drell [43] for the γ matrices and Dirac spinors, and we
take h̄ = c = 1.

A. A( p, 2 p) differential cross section and matrix element

The four-momenta of the incident and scattered proton
are denoted as P

µ

1 (Ep1, �p1) and K
µ

1 (Ek1, �k1). The proton
momenta �p1 and �k1 define the scattering plane. The four-
momentum transfer is given by (ω, �q) ≡ qµ = P

µ

1 − K
µ

1 =
K

µ

A−1 + K
µ

2 − K
µ

A , where K
µ

A(EA, �kA),Kµ

A−1(EA−1, �kA−1),
and K

µ

2 (Ek2, �k2) are the four-momenta of the target nu-
cleus, residual nucleus, and the ejected proton. The standard
convention Q2 ≡ −qµqµ = |�q|2 − ω2 � 0 is followed for the
four-momentum transfer.

In the laboratory frame, the fivefold differential cross
section can be written as(

d5σ

dEk1d�1d�2

)
= M3

pMA−1

(2π )5MA

k1k2

p1
f −1

rec

∑
if

∣∣M(p,2p)
f i

∣∣2
. (1)

Here, M(p,2p)
f i is the invariant matrix element which reflects

the transition between the initial and final states. The hadronic
recoil factor is given by

frec = EA−1

EA

∣∣∣∣∣1 + Ek2

EA−1

(
1 − �q · �k2

k2
2

)∣∣∣∣∣
=

∣∣∣∣1 + ωk2 − qEk2 cos θk2q

MAk2

∣∣∣∣, (2)

with the energy transfer ω = Ep1 − Ek1 = EA−1 + Ek2 −
EA, the three-momentum transfer �q = �p1 − �k1 = �kA−1 +
�k2 − �kA, and θk2q the angle between �k2 and �q.

The A(p, 2p) matrix element is given by

M(p,2p)
f i = 〈

K
µ

1 ms1f , K
µ

2 ms2f , A − 1
(
K

µ

A−1, JR MR

)
× ∣∣Ô(2)

∣∣P µ

1 ms1i , A
(
K

µ

A, 0+, g.s.
)〉
, (3)

where

Ô(2) =
A∑

i<j=0

O(�ri, �rj ) (4)

is the unknown two-body operator describing the high-
momentum transfer hard pp scattering, |A (Kµ

A, 0+, g.s.)〉
the ground state of the even-even target nucleus, and
|A − 1 (Kµ

A−1, JR MR)〉 the discrete state in which the residual
nucleus is left. In coordinate space, the matrix element takes
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on the form

M(p,2p)
f i =

∫
d�r0

∫
d�r1

∫
d�r2 . . .

∫
d�rA

×(
�

�k1,ms1f ,�k2,ms2f

A+1 (�r0, �r1, �r2, . . . , �rA)
)†Ô(2)

× �
�p1,ms1i ,g.s.
A+1 (�r0, �r1, �r2, . . . , �rA). (5)

For the sake of notation brevity, only the spatial coordinates
are explicitly written.

B. Relativistic plane wave impulse approximation

In this section, the A(p, 2p) matrix element of Eq. (5)
will be analyzed in the RPWIA. In this approach, only one
hard collision between the projectile and a bound nucleon is
assumed to occur, knocking the bound nucleon out of the target
nucleus. The modeling of the soft IFSI processes, which affect
both the incoming and outgoing protons, will be considered in
Sec. II C.

In evaluating the A(p, 2p) matrix element of Eq. (5), a
mean-field approximation for the nuclear wave functions is
adopted. We also assume factorization between the hard NN
coupling and the nuclear dynamics. For reasons of conciseness,
the forthcoming derivations are explained for the A = 3 case.
The generalization to arbitrary mass number A is rather
straightforward.

The antisymmetrized (A + 1)-body wave function in the
initial state is of the Slater determinant form

�
�p1,ms1i ,g.s.
A+1 (�r0, �r1, �r2, �r3)

= 1√
(A + 1)!

∣∣∣∣∣∣∣∣∣
φ �p1ms1i

(�r0) φα1 (�r0) φα2 (�r0) φα3 (�r0)

φ �p1ms1i
(�r1) φα1 (�r1) φα2 (�r1) φα3 (�r1)

φ �p1ms1i
(�r2) φα1 (�r2) φα2 (�r2) φα3 (�r2)

φ �p1ms1i
(�r3) φα1 (�r3) φα2 (�r3) φα3 (�r3)

∣∣∣∣∣∣∣∣∣ . (6)

Details on the bound-state single-particle wave functions
φαi

(�r, �σ ) entering this mean-field (A + 1)-body wave function
can be found in Appendix A. The wave function of the
incoming proton is given by a relativistic plane wave

φ�kms
(�r) ≡

√
E + M

2M

[
1

1
E+M

�σ · �̂p
]

ei�k·�rχ 1
2 ms

= ei�k·�r u(�k,ms). (7)

The (A + 1)-body wave function in the final state reads

�
�k1,ms1f ,�k2,ms2f

A+1 (�r0, �r1, �r2, �r3)

= 1√
(A + 1)!

∣∣∣∣∣∣∣∣∣∣
φ�k1ms1f

(�r0) φ�k2ms2f
(�r0) φα2 (�r0) φα3 (�r0)

φ�k1ms1f
(�r1) φ�k2ms2f

(�r1) φα2 (�r1) φα3 (�r1)

φ�k1ms1f
(�r2) φ�k2ms2f

(�r2) φα2 (�r2) φα3 (�r2)

φ�k1ms1f
(�r3) φ�k2ms2f

(�r3) φα2 (�r3) φα3 (�r3)

∣∣∣∣∣∣∣∣∣∣
.

(8)

Relative to the target nucleus ground state written in Eq. (6),
the wave function of Eq. (8) refers to the situation whereby
the struck proton resides in a state “α1,” leaving the residual
A − 1 nucleus as a hole state in that particular single-particle

level. The outgoing protons are represented by relativistic
plane waves.

Since both the initial and the final wave functions are fully
antisymmetrized, one can choose the operator Ô(2) to act on
two particular coordinates (�r0 and �r1). Without any loss of
generality, the A(p, 2p) matrix element of Eq. (5) can be
written as

M(p,2p)
f i = A(A + 1)

2

1

(A + 1)!

∫
d�r0

∫
d�r1

∫
d�r2

∫
d�r3

×
∑

k,l∈{�k1ms1f ,�k2ms2f }

∑
m,n∈{α2,α3}

∑
o,p∈{ �p1ms1i ,α1}

×
∑

q,r∈{α2,α3}
εklmnεopqrφ

†
k(�r0)φ†

l (�r1)φ†
m(�r2)φ†

n(�r3)

×O(�r0, �r1)φo(�r0)φp(�r1)φq(�r2)φr (�r3), (9)

with εijkl the Levi-Civita tensor. In the RPWIA,∫
d�r0

∫
d�r1

∫
d�r2φ

†
k(�r0)φ†

l (�r1)φ†
m(�r2)O(�r0, �r1)φo(�r0)

× φp(�r1)φq(�r2) = δmq

∫
d�r0

∫
d�r1

∫
d�r2φ

†
k(�r0)

× φ
†
l (�r1)O(�r0, �r1)φo(�r0)φp(�r1)|φq(�r2)|2. (10)

Inserting this expression in Eq. (9), one obtains

M(p,2p)
f i = A(A + 1)

2

1

(A + 1)!

∫
d�r0

∫
d�r1

∫
d�r2

∫
d�r3

×
∑

k,l∈{�k1ms1f ,�k2ms2f }

∑
o,p∈{ �p1ms1i ,α1}

∑
m,n∈{α2,α3}

× εklmnεopmnφ
†
k(�r0)φ†

l (�r1)|φm(�r2)|2|φn(�r3)|2
× O(�r0, �r1)φo(�r0)φp(�r1). (11)

There are (A − 1)! possible choices (permutations) for the
indices m, n, . . ., all giving the same contribution to the matrix
element. Accordingly, the above expression can be rewritten
as

M(p,2p)
f i = 1

2

∫
d�r0

∫
d�r1

∫
d�r2

∫
d�r3

×
∑

k,l∈{�k1ms1f ,�k2ms2f }

∑
o,p∈{ �p1ms1i ,α1}

× εklα2α3εopα2α3φ
†
k(�r0)φ†

l (�r1)|φα2 (�r2)|2|φα3 (�r3)|2
× O(�r0, �r1)φo(�r0)φp(�r1). (12)

Because the bound-state wave functions are normalized to
unity (

∫
d�r|φα(�r)|2 = 1) and O(�r0, �r1) = O(�r1, �r0), the matrix

element can be further simplified to

M(p,2p)
f i =

∫
d�r0

∫
d�r1

(
φ
†
�k1ms1f

(�r0)φ†
�k2ms2f

(�r1)

− φ
†
�k2ms2f

(�r0)φ†
�k1ms1f

(�r1)
)

× O(�r0, �r1)φ �p1ms1i
(�r0)φα1 (�r1), (13)

including a direct and an exchange term.
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In expression (13), substitution of the general form of the
scattering operator O(�r0, �r1) = ∫

d �p
(2π)3 e

i �p·(�r1−�r0)F̂ , where F̂ is
the NN scattering amplitude in momentum space, leads to∫

d �p
(2π )3

∫
d�r0

∫
d�r1e

−i�k1· �r0u†(�k1,ms1f )e−i�k2· �r1

× u†(�k2,ms2f )ei �p · (�r1−�r0)F̂ ei �p1 · �r0u( �p1,ms1i)φα1 (�r1)

= u†(�k1,ms1f )u†(�k2,ms2f ) F̂ u( �p1,ms1i)φα1 ( �pm) (14)

for the direct term and a similar expression for the exchange
term. Here, φα( �p) is the relativistic wave function for the bound
nucleon in momentum space (for details see Appendix A)
and �pm = �k1 + �k2 − �p1 is the missing momentum. In order to
arrive at a cross-section factorized expression for Eq. (1), the
quasielastic off-shell proton-proton scattering matrix element
will be related to the free on-shell proton-proton cross section.
For this purpose, we insert the completeness relation∑

s

[u( �pm, s)ū( �pm, s) − v( �pm, s)v̄( �pm, s)] = 1 (15)

in

M(p,2p)
f i = u†(�k1,ms1f )u†(�k2,ms2f ) F̂ u( �p1,ms1i)

×φα1 ( �pm) − (�k1ms1f ↔ �k2ms2f ), (16)

and obtain the following expression for the matrix element:

M(p,2p)
f i =

∑
s

(
Mpp

f i

)
ms1i ,s,ms1f ,ms2f

ū( �pm, s)φα1 ( �pm)

− negative-energy projection term. (17)

Here, Mpp

f i is the matrix element for free pp scattering(
Mpp

f i

)
ms1i ,ms2i ,ms1f ,ms2f

= u†(�k1,ms1f )u†(�k2,ms2f )

× F̂ u( �p1,ms1i)u( �p2,ms2i)

− (�k1ms1f ↔ �k2ms2f ). (18)

Factorization breaks down, even when IFSI are disregarded,
owing to the negative-energy projection term. To recover
factorization, the negative-energy projection term is neglected
in the remainder of this work

M(p,2p)
f i ≈

∑
s

(
Mpp

f i

)
ms1i ,s,ms1f ,ms2f

ū( �pm, s)φα1 ( �pm). (19)

Using the expression of the relativistic bound-nucleon wave
function in momentum space given in Appendix A, the ū φα

contraction in Eq. (19) reduces to [44]

ū( �p, s) φα( �p) = (−i)l(2π )3/2

√
Ē + Mp

2Mp

× αnκ (p) χ
†
1
2 s
Yκm(�p), (20)

where Ē =
√

p2 + M2
p, χ

†
1
2 s
Yκm indicates the spin projection

of the spin spherical harmonic Yκm(�p) on a spin state χ 1
2 s ,

and the radial function in momentum space αnκ is given by

αnκ (p) = gnκ (p) − p

Ē + Mp

Sκ fnκ (p), (21)

with gnκ and fnκ the Bessel transforms of the standard upper
and lower radial functions of the bound-nucleon wave function
in coordinate space (see Appendix A for details) and Sκ =
κ/|κ|.

Upon squaring Eq. (19), the pp and nuclear bound-state
parts get coupled by the summation over the intermediate spins
s and s ′:∣∣M(p,2p)

f i

∣∣2 ≈
∑
s,s ′

(
Mpp

f i

)∗
ms1i ,s,ms1f ,ms2f

(
Mpp

f i

)
ms1i ,s ′,ms1f ,ms2f

× (ū( �pm, s)φα1 ( �pm))∗ū( �pm, s ′)φα1 ( �pm). (22)

After summation over m, the struck nucleon’s general-
ized angular momentum quantum number, the square of
ū( �pm, s)φα1 ( �pm) yields a δss ′ , i.e., becomes diagonal in s.
Thereby, use is made of the identity∑

m

(
χ
†
1
2 s
Yκm

)∗
χ
†
1
2 s ′Yκm = 2j + 1

8π
δss ′ . (23)

This leads to the decoupling between the pp scattering and the
bound-state part in the matrix element:∑

if

∣∣M(p,2p)
f i

∣∣2 ≈ (2π )3 2j + 1

8π
|α̃nκ (pm)|2

∑
ms1i ,ms1f ,ms2f

×
∑

s

∣∣(Mpp

f i

)
ms1i ,s,ms1f ,ms2f

∣∣2
, (24)

with

α̃nκ (p) =
√

Ē + Mp

2Mp

αnκ (p). (25)

The last factor in Eq. (24) can be related to the free
pp scattering center-of-mass cross section(

dσpp

d�

)
c.m.

= M4
p

(2π )2s

1

2

∑
ms1i ,ms1f ,ms2f

×
∑

s

∣∣(Mpp

f i

)
ms1i ,s,ms1f ,ms2f

∣∣2
, (26)

so that the RPWIA differential A(p, 2p) cross section of
Eq. (1) can be written in the cross-section factorized form(

d5σ

dEk1d�1d�2

)RPWIA

≈ sMA−1

MpMA

k1k2

p1
f −1

rec
2j + 1

4π

× |α̃nκ (pm)|2
(

dσpp

d�

)
c.m.

. (27)

Here, s is the Mandelstam variable for the pp scattering, not to
be confused with the intermediate spin from Eqs. (15)–(24).
In the numerical calculations presented in the following
sections, the free proton-proton cross section ( dσpp

d�
)c.m. is

obtained from the SAID code [12].

C. Treatment of the IFSI

It is well known that the factorized RPWIA result of
Eq. (27) adopts an oversimplified description of the reac-
tion mechanism. The momentum distribution 2j+1

4π
|α̃nκ (pm)|2,

which represents the probability of finding a proton in the
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target nucleus with missing momentum �pm, will be modified
by the scatterings of the incoming and outgoing protons in the
nucleus. Therefore, it is necessary to incorporate the effects of
these IFSI in the model.

First, in Sec. II C 1, the differential A(p, 2p) cross section
is written in a factorized form taking IFSI effects into account.
Next, the relativistic eikonal methods used for dealing with
the IFSI effects in this work are discussed in depth. Two
methods will be used. The relativistic optical model eikonal
approximation (ROMEA) is the subject of Sec. II C 2, whereas
the relativistic multiple-scattering Glauber approximation
(RMSGA) is discussed in Sec. II C 3.

1. Factorization assumption and the distorted momentum
distribution

In both versions of the relativistic eikonal framework for
A(p, pN ) reactions presented here (ROMEA and RMSGA),
the antisymmetrized initial- and final-state (A + 1)-body wave
functions,

�
�p1,ms1i ,g.s.
A+1 (�r0, �r1, . . . , �rA) = Â

[
Ŝp1(�r0, �r2, . . . , �rA)

× ei �p1 · �r0 u( �p1,ms1i)

× �
g.s.
A (�r1, �r2, . . . , �rA)

]
(28)

and

�
�k1,ms1f ,�k2,ms2f

A+1 (�r0, �r1, . . . , �rA)

= Â
[
Ŝ†

k1(�r0, �r2, . . . , �rA)ei�k1· �r0 u(�k1,ms1f )

× Ŝ†
k2(�r1, �r2, . . . , �rA)ei�k2·�r1 u(�k2,ms2f )

×�
JR MR

A-1 (�r2, . . . , �rA)
]
, (29)

differ from their respective RPWIA expressions of Eqs. (6)
and (8) through the presence of the operators Ŝp1, Ŝk1, and
Ŝk2. These define the accumulated effect of all interactions
that the incoming and emerging protons undergo in their way
into and out of the target nucleus.

Since the IFSI violate factorization, some additional
approximations are in order. First, only central IFSI are
considered, i.e., spin-orbit contributions are omitted. Further,
the zero-range approximation is adopted for the hard NN
interaction, allowing one to replace the coordinates of the two
interacting protons (�r0 and �r1) by one single collision point
in the distorting functions Ŝp1, Ŝk1, and Ŝk2. This leads to the
distorted momentum-space wave function

φD
α1

( �pm) =
∫

d�re−i �pm·�rφα1 (�r)SIFSI(�r), (30)

similar to Eq. (A4), but with the additional IFSI factor

SIFSI(�r) =
∫

d�r2 . . .

∫
d�rA

∣∣φα2 (�r2)
∣∣2

. . .
∣∣φαA

(�rA)
∣∣2

× Ŝk1(�r, �r2, . . . , �rA) Ŝk2(�r, �r2, . . . , �rA)

× Ŝp1(�r, �r2, . . . , �rA) (31)

accounting for the soft IFSI effects.

Now, along the lines of [45], it is natural to define a distorted
wave amplitude

ψD( �pm) = ū( �pm, s)φD
α1

( �pm), (32)

so that the distorted momentum distribution is given by the
square of this amplitude,

ρD( �pm) = 1

(2π )3

∑
m

∑
s

|ψD( �pm)|2. (33)

This distorted momentum distribution has the following
properties. First, it takes into account the distortions for
the incoming and outgoing protons. Second, it reduces to
the plane wave momentum distribution 2j+1

4π
|α̃nκ (pm)|2 in the

plane wave limit when assuming that φα1 ( �pm) satisfies the
relation

�σ · �p
Ē + Mp

φu = φd (34)

between the upper and lower components.
Using the ansatz (33) for the distorted momentum distribu-

tion, the differential A(p, 2p) cross section can be cast in the
form(

d5σ

dEk1d�1d�2

)D

≈ sMA−1

MpMA

k1k2

p1
f −1

rec

× ρD( �pm)

(
dσpp

d�

)
c.m.

. (35)

It differs from the RPWIA expression (27) through the
introduction of a “distorted” momentum distribution ρD .

2. Relativistic optical model eikonal approximation

As shown, for example, in Refs. [46,47], in the relativistic
eikonal limit the scattering wave function of a nucleon with
energy E = √

k2 + M2 and spin state | 1
2ms〉 subject to a scalar

k2

k1

p1

θ1

θ2

zp1

bp1

bk1

bk2

FIG. 2. Geometry of the scattering process. Vectors �bp1 ,
�bk1 , and

�bk2 are the impact parameters for each of the three paths for a collision
occurring at �r . zp1 , zk1 , and zk2 are the z coordinates of the collision
point in the respective coordinate systems. θ1 and θ2 are the angles of
the outgoing nucleons relative to the incoming proton direction.
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FIG. 3. (Color online) Radial and polar-angle dependence of the real part of the IFSI factor SIFSI in the scattering plane (φ = 0◦) for proton
knockout from the Fermi level in 12C. Upper left panel is the contribution from the impinging proton (Ŝp1); upper right panel shows the
effect of the FSI of the scattered proton (Ŝk1). Bottom left shows the effect of the FSI of the ejected proton (Ŝk2); bottom right shows the
complete IFSI factor (Ŝk1 Ŝk2 Ŝp1). Kinematics: Tp1 = 1 GeV, Tk1 = 870 MeV, θ1 = 13.4◦, and θ2 = 67◦.

(Vs) and a vector potential (Vv) takes on the form

ψ
(+)
�k,ms

=
√

E + M

2M

[
1

1
E+M+Vs−Vv

�σ · �̂p
]

ei�k·�reiS(�r)χ 1
2 ms

, (36)

where the eikonal phase S(�b, z) reads

iS(�b, z) = −i
M

K

∫ z

−∞
dz′

[
Vc(�b, z′) + Vso(�b, z′)

× [�σ · (�b × �K) − iKz′]
]

, (37)

with �r ≡ (�b, z) and the average momentum �K pointing along
the z axis. The central and spin-orbit potentials Vc and Vso

in the above expression are determined by Vs and Vv and
their derivatives. In general, a fraction of the strength from
the incident beam is removed from the elastic channel into the
inelastic ones. These inelasticities are commonly implemented
by means of the imaginary part of the optical potential.

In evaluating the IFSI effects, three approximations are
introduced. First, the dynamical enhancement of the lower
component of the scattering wave function (36), which is
due to the combination of the scalar and vector potentials,
is neglected. Second, the impulse operator �̂p is replaced by the
asymptotic momentum �k of the nucleon. As mentioned before,
the spin-orbit potential Vso is also omitted.

As a result, the effects of the interactions of the incoming
and outgoing protons with the residual nucleus are imple-
mented in the distorted momentum-space wave function of
Eq. (30) through the following phase factors:

Ŝp1(�r) = e
−i

Mp

p1

∫ zp1−∞ dzVc

(
�bp1 ,z

)
, (38a)

Ŝk1(�r) = e
−i

Mp

k1

∫ +∞
zk1

dz′Vc

(
�bk1 ,z′

)
, (38b)

Ŝk2(�r) = e
−i

Mp

k2

∫ +∞
zk2

dz′′Vc

(
�bk2 ,z′′

)
, (38c)
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FIG. 4. (Color online) As in Fig. 3, but for the imaginary part of the IFSI factor.

with the z axes of the different coordinate systems lying along
the trajectories of the respective particles (z along the direction
of the incoming proton �p1, z

′ along the trajectory of the
scattered proton �k1, and z′′ along the path of the ejected nucleon
�k2); and (�bp1 , zp1 ), (�bk1 , zk1 ), and (�bk2 , zk2 ) are the coordinates
of the collision point �r in the respective coordinate systems.
The geometry of the scattering process is illustrated in Fig. 2.
The integration limits guarantee that the incoming proton only
undergoes ISI up to the point where the hard NN collision
occurs, and the outgoing protons are only subject to FSI after
this hard collision.

It is worth remarking that the eikonal IFSI operators of
Eq. (38) are one-body operators, i.e., they do not depend
on the coordinates (�r2, �r3, . . . , �rA) of the residual nucle-
ons. The normalization of the bound-state wave functions
simplifies the IFSI factor (31) considerably to SIFSI(�r) =
Ŝk1(�r) Ŝk2(�r) Ŝp1(�r) in the ROMEA case.

In the numerical calculations, we employed the global
S − V parametrizations of Cooper et al. [31] and the optical
potential of van Oers et al. [9] to describe the PNPI and

TRIUMF data, respectively. Hereafter, the A(p, 2p) calcu-
lations which adopt Eq. (38) as a starting basis are labeled the
relativistic optical model eikonal approximation (ROMEA).

3. Relativistic multiple-scattering Glauber approximation

In the ROMEA approach, all the IFSI effects are
parametrized in terms of mean-field like optical potentials,
i.e., the IFSI are seen as a scattering of the nucleon with
the residual nucleus as a whole. As the energy increases,
shorter distances are probed and the scattering with the
individual nucleons becomes more relevant. For proton kinetic
energies Tp � 1 GeV, the highly inelastic and diffractive
character of the underlying elementary proton-nucleon scat-
tering cross sections makes the Glauber approach [39–41]
more natural. This method reestablishes the link between
proton-nucleus interactions and the elementary proton-proton
and proton-neutron scattering. It essentially relies on the
eikonal or, equivalently, the small-angle approximation and the
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FIG. 5. Radial dependence of the real part of the IFSI factor SIFSI in the scattering plane (φ = 0◦) for neutron knockout from the Fermi
level in 40Ca. Upper left, upper right, and bottom left panels display Ŝp1, Ŝk1, and Ŝk2, respectively; the complete IFSI factor is shown in the
bottom right.

assumption of consecutive cumulative scatterings of a fast
nucleon on a composite target containing “frozen” point
scatterers (nucleons).

In relativistic Glauber theory, the scattering wave function
of a nucleon with energy E = √

k2 + M2 and spin state | 1
2ms〉

reads [48,49]

ψ
(+)
�k,ms

=
√

E + M

2M
Ŝ

[
1

1
E+M

�σ · �̂p
]

ei�k·�rχ 1
2 ms

. (39)

The operator Ŝ implements the subsequent elastic or “mildly
inelastic” collisions of the fast nucleon with the frozen
spectator nucleons

Ŝ(�r, �r2, �r3, . . . , �rA) ≡
A∏

j=2

[1 − �(�b − �bj )θ (z − zj )], (40)

where θ (z − zj ) ensures that the nucleon only interacts with
other nucleons if they are localized in its forward propagation
path. Given the diffractive nature of pN collisions at GeV
energies, the profile function �(�b) for central elastic pN

scattering is parametrized in a functional form of the type

�(�b) = σ tot
pN (1 − iεpN )

4πβ2
pN

exp

(
−

�b2

2β2
pN

)
. (41)

At lower energies, that part of the profile function proportional
to εpN is non-Gaussian and makes significant contributions to
nuclear scattering. Rather than Eq. (41), a parametrization
in terms of the Arndt NN phases [12] is appropriate at
lower energies. For the calculations presented here, which
address higher energies, the Gaussian-like real part of �(�b)
is the dominant contributor, and the use of Eq. (41) is
justified. The parameters in Eq. (41) can be determined directly
from elementary nucleon-nucleon scattering experiments and
include the total pN cross sections σ tot

pN , the slope parameters
βpN , and the ratios of the real to the imaginary part of
the scattering amplitude εpN . We obtained these Glauber
parameters through interpolation of the database available
from the Particle Data Group [50] (for more details, see
Ref. [49]). As in the ROMEA framework, only the central
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FIG. 6. (Color online) Polar- and azimuthal-angle dependence of the real part of SIFSI(r = 3 fm, θ, φ) for proton knockout from the Fermi
level in 16O. Kinematics as in Fig. 3. ROMEA calculation with the EDAD2 optical potential [31]. As in the previous figures, the upper left,
upper right, and bottom left panels represent the effect of the ISI of the incoming proton, the FSI of the scattered proton, and the FSI of the
struck nucleon, respectively, whereas the bottom right figure displays the complete IFSI factor.

spin-independent contribution is retained, and the impulse
operator is replaced by the nucleon momentum.

The Glauber operators in Eq. (31) take the forms

Ŝp1(�r, �r2, �r3, . . . , �rA) =
A∏

j=2

[1 − �(�b − �bj )

× θ (z − zj )], (42a)

Ŝk1(�r, �r2, �r3, . . . , �rA) =
A∏

j=2

[1 − �(�b′ − �bj

′
)

× θ (z′
j − z′)], (42b)

Ŝk2(�r, �r2, �r3, . . . , �rA) =
A∏

j=2

[1 − �(�b′′ − �bj

′′
)

× θ (z′′
j − z′′)], (42c)

where �r denotes the collision point and (�r2, �r3, . . . , �rA) are
the positions of the frozen spectator protons and neutrons in
the target. The (�b, z), (�b′, z′), and (�b′′, z′′) coordinate systems
are defined as in the previous section. The step functions
make sure that the incoming proton can only interact with
the spectator nucleons it encounters before the hard collision
and that the outgoing protons can only interact with the
spectator nucleons they find in their forward propagation
paths.

Contrary to ROMEA, the Glauber IFSI operators of
Eq. (42) are genuine A-body operators, so the integration over
the coordinates of the spectator nucleons in Eq. (31) has to
be carried out explicitly. This makes the numerical evalua-
tion of the Glauber IFSI factor very challenging. Standard
numerical integration techniques were adopted to evaluate
the IFSI factor, and no additional approximations, such as
the commonly used thickness-function approximation, were
introduced.
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FIG. 7. Contribution to the A(p, 2p) cross section δ(r) as a function of r. Upper figures present the results obtained after setting the
IFSI factor SIFSI(�r) equal to 1 in Eq. (B4); lower panels depict the ROMEA calculations using the EDAD1 optical potential. Dashed
(dot-dashed) curves show the results for emission from the Fermi (lowest lying 1s1/2) level. Solid curves show baryon density ρ(r);
the ordinate is given for ρ(r). The δ(r) are plotted in units of fm2 up to an arbitrary scaling factor. Kinematics: Tp1 = 1 GeV, Tk1 =
870 MeV, θ1 = 13.4◦, and θ2 = 67◦.

Henceforth, we refer to calculations based on Eq. (42)
as the relativistic multiple-scattering Glauber approximation
(RMSGA).

III. NUMERICAL RESULTS FOR THE IFSI FACTOR

In this section, results for the IFSI factor (31) are given for
the knockout of nucleons from the Fermi level in 12C, 16O, and
40Ca, at an incident energy Tp1 = 1 GeV and a scattered proton
kinetic energy Tk1 = 870 MeV. Thereby, we adopt coplanar
scattering angles (θ1, θ2) = (13.4◦, 67◦) on opposite sides of
the incident beam, i.e., kinematics corresponding with the
PNPI experiment of Ref. [42]. All IFSI effects are included in
the IFSI factor SIFSI(�r). Note that in the absence of initial- and
final-state interactions, the real part of the IFSI factor equals 1,
whereas the imaginary part vanishes identically.

The A(p, 2p) IFSI factor is a function of three independent
variables (r, θ, φ). The z axis is chosen along the direction
of the incoming beam �p1, the y axis lies along �p1 × �k1, and
the x axis lies in the scattering plane defined by the proton
momenta �p1 and �k1. θ and φ denote the polar and azimuthal
angles with respect to the z and the x axis, respectively. The
radial coordinate r represents the distance relative to the center
of the target nucleus.

A. θ dependence

To gain better insight into the dependence of the IFSI factor
on r, θ , and φ, we calculated the contribution of the three
distorting functions Ŝp1, Ŝk1, and Ŝk2 to the IFSI factor. In
Figs. 3 and 4, results are displayed for the computed real
and imaginary parts of SIFSI(r, θ, φ = 0) for proton emission
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(dot-dashed curve) optical potentials. Kinematics as in Fig. 3.

from the Fermi level in 12C. The results were computed within
the ROMEA framework, using the EDAD1 optical-potential
parametrization of [31].

The θ dependence can be interpreted as follows. For a
given r, the distance that the incoming proton travels through

the target nucleus before colliding hard with a target nucleon
decreases with increasing angle θ . As a consequence, small
values of θ induce the largest ISI. For the FSI of the scattered
proton, the opposite holds true, and θ = 180◦ for a large r
value corresponds to an event whereby the hard collision
transpires at the outskirts of the nucleus, and the scattered
proton has to travel through the whole nucleus before it
becomes asymptotically free, thus giving rise to the smallest
(largest) values for the real (imaginary) part of the IFSI factor.
Unlike the scattered proton, which moves almost collinear
to the z axis, the ejected nucleon leaves the nucleus under
a large scattering angle θ2. Hence, the FSI are minimal for
θ close to 0◦ or 180◦ and maximal for θ around 180◦ − θ2.
Finally, the θ dependence of the complete IFSI factor is the
result of the interplay between the three distorting effects, with
the strongest scattering and absorption observed at θ close to
0◦, 180◦ − θ2, and 180◦.

B. r dependence

Figure 5 displays the real part of the IFSI factor as a function
of r at various values of θ . The ROMEA calculations were
performed for the same kinematics as in Figs. 3 and 4, and use
the EDAI optical-potential fit of [31].

The upper left panel, suggests that the ISI effects increase
with growing r for θ = 0◦. For θ = 45◦ and increasing r,
initially, the growing distance the proton has to travel through
the nucleus leads to a decrease of the real part of Ŝp1. This
is followed by an increase for larger r up to Ŝp1 = 1. This
reduction in ISI effects with increasing r is brought about
by the incoming proton’s path through the nucleus moving
away from the nuclear interior and closer to the less dense
nuclear surface. The other curves of the upper left figure
illustrate a general trend for 90◦ � θ � 180◦: as r increases,
the real part of the IFSI factor grows correspondingly. As
can be appreciated from Fig. 5 as well as from the previous
figures, the global behavior of the Ŝk1 factor describing the
scattered proton’s FSI can be related to that of the ISI factor
Ŝp1 through the substitution θ → 180◦ − θ . This approximate
symmetry can be attributed to the small scattering angle θ1;
i.e., the scattered proton leaves the nucleus almost parallel to
the incoming proton’s direction. In the bottom left panel, the
additional curve (θ = 115◦, i.e., close to 180◦ − θ2) represents
the situation of maximal FSI of the ejected nucleon. For this
θ value, the path of the ejected nucleon passes through the
center of the nucleus, and the distance traveled through the
nucleus increases with r. Accordingly, the real part of Ŝk2 is
a monotonously decreasing function of r. The other extreme
is the θ = 0◦ case, where increasing r means less FSI. For
the other θ values, the absorption reaches its maximum for
some intermediate r value. Again, the combination of Ŝp1, Ŝk1,
and Ŝk2 determines the total IFSI factor with the strongest
attenuation predicted in the nuclear interior.

C. φ dependence

The dependence of the IFSI factor on the azimuthal angle of
the collision point is quite straightforward. One representative
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FIG. 9. (Color online) As in Fig. 3, but using the RMSGA method.

result is displayed in Fig. 6. Here, cos φ � 0 (cos φ � 0) refers
to a situation where the hard NN collision occurs in the upper
(lower) hemisphere with respect to the yz plane (see Fig. 2 for

a collision point located in the upper hemisphere). Because
of the cylindrical symmetry about the z axis, the factor
describing the ISI of the incoming proton is independent
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FIG. 10. Differential cross section for the 12C(p, 2p) reaction. Solid curve represents the ROMEA calculation; dashed curve is the plane
wave result reduced by the indicated factor. ROMEA results are normalized to the data. Data points are from Ref. [42]. Magnitude of the
experimental error bars is estimated to be 5%–10%.
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FIG. 11. As in Fig. 10, but for the 16O(p, pn) reaction.

of φ. Regarding the scattered proton, we observe the least
FSI in the upper hemisphere, since the proton then avoids
passing through the highly absorbing nuclear interior. For the
ejected nucleon, the contrary applies, and the strongest FSI
effects are found for φ = 0◦. As the xz plane is defined as
the scattering plane, the IFSI factor possesses the symmetry
SIFSI(r, θ, 2π − φ) = SIFSI(r, θ, φ) for coplanar scattering.

D. Level and A dependence

Results for the emission from levels other than the Fermi
level have not been plotted here, because it turns out that the
IFSI factors hardly depend on the single-particle level in which
the struck nucleon resides. The peculiar spatial characteristics
of the different single-particle orbits have an impact on the
observables, though. Indeed, the distorted momentum-space
wave function φD

α1
of Eq. (30) is determined by the values

of the IFSI factor folded with a relativistic bound-state wave
function φα1 (�r). As the particles experience less IFSI close to
the nuclear surface, one obtains a stronger reduction of the
quasifree cross section for nucleon knockout from a level that
has a larger fraction of its density in the nuclear interior. This
will become apparent in Fig. 7, but even more so in Sec. IV A.

Figure 7 shows a function δ(r) which represents the
contribution of the nuclear region with radial coordinate r

to the differential cross section. The procedure for calculating
this function is similar to the method exposed in Ref. [51]
and is developed in Appendix B. Comparison of the upper
and lower panels illustrates that IFSI mechanisms make the
A(p, 2p) cross sections reflect surface mechanisms, unlike
the A(e, e′p) reaction where the weakly interacting electron
probes the entire nuclear volume and only the outgoing proton
interacts with the residual system. Apart from the shift to
higher r, the IFSI brings about a strong reduction in the
magnitude of the cross sections, whereby the Fermi level is
least affected. Even though δ(r) is concentrated in the surface
region, the average density seen through this reaction still
amounts to 0.069 fm−3 (0.080 fm−3) or 32% (45%) of the
central density in the case of 1s1/2 knockout from 12C (40Ca).
In the case of emission from the Fermi level, on the other hand,
the average density is only 12% (13%) of the central density
for a 12C (40Ca) target.

Also, the IFSI factors for neutron emission are almost
identical to the corresponding IFSI factors for proton knockout,
and, as expected, the overall effect of IFSI is more pronounced
for heavier target nuclei.

E. Comparison between ROMEA and RMSGA calculations

In this section, we investigate the sensitivity of the com-
puted IFSI factors to the adopted parametrizations for the
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FIG. 12. As in Fig. 10, but for the 40Ca(p, pn) reaction.
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FIG. 13. 12C(p, 2p) momentum distribution for the 1p3/2 state as
a function of the missing momentum. Solid (dashed) curve represents
ROMEA (RPWIA) calculation.

optical potentials and compare the ROMEA results with the
RMSGA predictions. As can be seen in Fig. 8, the IFSI
factor depends on whether A-dependent (EDAD1/EDAD2) or
A-independent (EDAI) fits for the potentials are selected, but
the global features are comparable. Figure 9, as contrasted
to Fig. 3, demonstrates that the RMSGA method adequately
describes the ISI of the incoming proton and the FSI of
the scattered proton. However, the discrepancies between
ROMEA and RMSGA become significant in the calculation
of the FSI of the ejected nucleon (note the different scales
in the bottom left panels of Figs. 3 and 9) and, therefore,
also in the complete IFSI factor. The noted difference is
attributed to the low ejectile kinetic energy (Tk2 ≈ 114 MeV

for the specific case of Fig. 9, and comparable values for
knockout from other levels and other nuclei). At such low
energies, the RMSGA predictions are not realistic because
of the underlying approximations, mostly the postulation of
linear trajectories and frozen spectator nucleons. So, for the
kinematics discussed here, the ROMEA method is to be
preferred over the RMSGA one, as the latter overestimates
the distortion for the low-energetic ejectile nucleon.

IV. NUMERICAL RESULTS FOR A( p, pN) DIFFERENTIAL
CROSS SECTIONS

A. The PNPI experiment

The PNPI experiment [42] was carried out with an incident
proton beam of energy 1 GeV. The scattered proton was
detected at θ1 = 13.4◦ with a kinetic energy between 800 and
950 MeV, while the knocked-out nucleon was observed at
θ2 = 67◦ having a kinetic energy below 200 MeV.

Figures 10–12 display a selection of differential cross-
section results as a function of the kinetic energy of the
most energetic nucleon in the final state. The EDAI optical
potential [31] was used for the ROMEA calculations. The other
parametrizations of Ref. [31] produce similar predictions,
whereas the RMSGA approach fails to give an adequate
description of the data because of the low kinetic energy of
the ejected nucleon. Since the experiment of Ref. [42] only
measured relative cross sections, the ROMEA results were
normalized to the experimental data.

The ROMEA calculations reproduce the shapes of the
measured differential cross sections. Furthermore, comparison
of the RPWIA and ROMEA calculations shows that the effect
of the IFSI is twofold. First, IFSI result in a reduction of the
RPWIA cross section that is both level and A dependent. From
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FIG. 14. Differential cross section for the 4He(p, 2p) reaction at angle pairs (40◦, 40◦) and (45◦, 35◦) at 250 MeV. Data are from Ref. [9].
Solid (dashed) curves refer to ROMEA (RPWIA) results.
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the figures it is clear that ejection of a nucleon from a deeper
lying level leads to stronger initial- and final-state distortions.
This reflects the fact that the incoming and outgoing nucleons
encounter more obstacles when a deeper lying bound nucleon
is probed. The A dependence also conforms with our expecta-
tions, i.e., the IFSI effects are larger for heavier nuclei. Besides
the attenuation, the IFSI also make the measured missing
momentum different from the initial momentum of the struck
nucleon. As can be inferred from Fig. 13, this momentum
shift leads to an asymmetry between the positive and negative
missing-momentum side of the momentum distribution. Note
that a positive missing momentum corresponds to pmx

=
k1 sin θ1 + k2 sin θ2 cos φ2 > 0.

B. The TRIUMF 4He( p, 2 p) experiment

Finally, we present some results for the 4He(p, 2p) reaction
at an incident proton energy of 250 MeV. Figure 14 compares
the data from the TRIUMF experiment [9] with ROMEA
calculations using the optical potential of van Oers et al.
[9]. The typical shape for knockout of an s-state proton is
reproduced by the ROMEA predictions. This fair agreement
of the ROMEA results with the data demonstrates that our
ROMEA model also works satisfactorily at lower incident
energies.

V. CONCLUSIONS

A relativistic and cross-section factorized framework to
describe the IFSI in quasielastic A(p, pN ) reactions has
been outlined. The model, which relies on the eikonal
approximation, can use either optical potentials or Glauber
multiple-scattering theory to deal with IFSI. Thanks to the
freedom of choice between these two substantially different
techniques, our model is expected to be applicable at both
intermediate and high incident energies.

The properties of the IFSI factor have been investigated
for an incident proton energy of 1 GeV. Not surprisingly, the
strongest attenuation occurs in the nuclear interior, and heavier
target nuclei are found to induce larger IFSI effects. Also,
the surface-peaked character of the A(p, pN ) reaction was
clearly established to be a consequence of the IFSI. Whereas
the different types of optical-potential sets contained in
Ref. [31] yield comparable IFSI factors, the RMSGA calcula-
tions exhibit an unrealistic behavior for these kinematics.

The ROMEA model has been used to calculate cross
sections for the kinematics of two different experiments:
quasielastic proton scattering from 12C, 16O, and 40Ca at
1 GeV, and 4He(p, 2p) scattering at 250 MeV. The predictions
are shown to reproduce the shape of the data reasonably well
at both incoming energies, thereby providing support for the
wide applicability range of our model.

Although the RMSGA approach was deemed unsuitable
for the kinematics discussed here, it should prove useful when
trying to describe nuclear transparency data. Work in this
direction is in progress.
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APPENDIX A: RELATIVISTIC BOUND-STATE WAVE
FUNCTIONS

For spherically symmetric potentials, the solutions φα(�r) to
a single-particle Dirac equation have the form [52]

φα(�r, �σ ) ≡ φnκm(�r, �σ ) =
[

i Gnκ (r)
r

Yκm(�, �σ )

−Fnκ (r)
r

Y−κm(�, �σ )

]
, (A1)

where n denotes the principal and κ and m the generalized
angular momentum quantum numbers. The Y±κm are the spin
spherical harmonics and determine the angular and spin parts
of the wave function,

Yκm(�, �σ ) =
∑
mlms

〈
lml

1

2
ms | jm

〉
Ylml

(�)χ 1
2 ms

(�σ ),

(A2)

Y−κm(�, �σ ) =
∑
mlms

〈
l̄ml

1

2
ms | jm

〉
Yl̄ml

(�)χ 1
2 ms

(�σ ),

with

j = |κ| − 1

2
, l =

{
κ, κ > 0
−(κ + 1), κ < 0 ,

(A3)

l̄ = 2j − l =
{

κ − 1, κ > 0
−κ, κ < 0 .

The Fourier transform of the relativistic bound-nucleon
wave function is given by

φα( �p) =
∫

d�re−i �p·�rφα(�r)

= (−i)l(2π )3/2

[
gnκ (p) Yκm(�p)

−Sκ fnκ (p) Y−κm(�p)

]
, (A4)

with Sκ = κ/|κ|. The radial functions gnκ and fnκ in momen-
tum space are obtained from their counterparts in coordinate
space:

gnκ (p) = i

√
2

π

∫ ∞

0
r2dr

Gnκ (r)

r
jl(pr), (A5a)

fnκ (p) = i

√
2

π

∫ ∞

0
r2dr

Fnκ (r)

r
jl̄(pr), (A5b)

with jl(pr) the spherical Bessel function of the first kind.

APPENDIX B: RADIAL CONTRIBUTION TO THE A( p, pN)
CROSS SECTION

The differential A(p, pN ) cross section (35) is proportional
to the distorted momentum distribution ρD of Eq. (33).

064603-15



B. VAN OVERMEIRE, W. COSYN, P. LAVA, AND J. RYCKEBUSCH PHYSICAL REVIEW C 73, 064603 (2006)

When approximating the completeness relation (15) as∑
s

u( �pm, s)ū( �pm, s) ≈ 1, (B1)

i.e., neglecting the negative-energy term as in Sec. II B, this
amounts to (

d5σ

dEk1d�1d�2

)D

∝
∑
m

φD
α1

φD
α1

. (B2)

Thus, with D(r) defined as

D(r) ≡
∫

d� r2 e−i �pm·�r φα1 (�r) SIFSI(�r), (B3)

the function

δ(r1) ≡
∑
m

1

�R

[∫ ∞

0
dr D(r)

∫ ∞

0
dr D(r)

−
(∫ r1

0
dr D(r) +

∫ ∞

r1+�R

dr D(r)

)
×

(∫ r1

0
dr D(r) +

∫ ∞

r1+�R

dr D(r)

)]
=

∑
m

(
D(r1) φD

α1
+ φD

α1
D(r1)

)
(B4)

represents the contribution of an infinitesimal interval in r
around r1 to the A(p, pN ) cross section. This procedure also
enables us to estimate the average density seen through this
reaction as

ρ ≡
∫ ∞

0 ρ(r) δ(r) dr∫ ∞
0 δ(r) dr

. (B5)
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