752 research outputs found

    Spreading Width for Decay out of a Superdeformed Band

    Get PDF
    The attenuation factor F responsible for the decay out of a superdeformed (SD) band is calculated with the help of a statistical model. This factor is given by 1/F = (1 + Gamma(down) / Gamma(S)). Here, Gamma(S) is the width for the collective E2 transition within the superdeformed band, and Gamma(down) is the spreading width which describes the mixing between a state in the SD band and the normally deformed (ND) states of equal spin. The attenuation factor F is independent of the statistical E1 decay widths Gamma(N) of the ND states provided that the Gamma(N) are much larger than both Gamma(down) and Gamma(S). This condition is generically met. Previously measured values of F are used to determine Gamma(down).Comment: Submitted to Physical Review Letter

    HIE-ISOLDE: the Scientific Opportunities

    Get PDF
    The HIE-ISOLDE project aims at substantial improvements of the energy range, the intensity and the quality of the secondary radioactive beams produced at the ISOLDE facility at CERN. This report presents the questions within nuclear physics and related areas, including nuclear astrophysics, Standard Model tests and condensed matter physics, that scientists will be able to address at HIE-ISOLDE and gives specific examples of how the upgrades will improve the experimental conditions. The physics possibilities at HIE-ISOLDE were reviewed at the NuPAC meeting (Nuclear Physics and Astrophysics at CERN) held at CERN in October 2005; this report gives a more comprehensive overview and incorporates technical and scientific developments that have taken place since then

    Alternative Interpretation of Sharply Rising E0 Strengths in Transitional Regions

    Full text link
    It is shown that strong 0+2 -> 0+1 E0 transitions provide a clear signature of phase transitional behavior in finite nuclei. Calculations using the IBA show that these transition strengths exhibit a dramatic and robust increase in spherical-deformed shape transition regions, that this rise matches well the existing data, that the predictions of these E0 transitions remain large in deformed nuclei, and that these properties are intrinsic to the way that collectivity and deformation develop through the phase transitional region in the model, arising from the specific d-boson coherence in the wave functions, and that they do not necessarily require the explicit mixing of normal and intruder configurations from different IBA spaces.Comment: 6 pages, 3 figure

    A 2D Electromagnetic PIC Code for Distributed Memory Parallel Computers

    Get PDF
    The two dimensional electrostatic plasma particle in cell (PIC) code described an [1] has been upgraded to a 2D electromagnetic PIC code running on the Caltech/JPL Mark IIIfp and the Intel iPSC/860 parallel MIMD computers. The code solves the complete time dependent Maxwell’s equations where the plasma responses, i.e., the charge and current density in the plasma, are evaluated by advancing in time the trajectories of ~ 10^6 particles in their self-consistent electromagnetic field. The field equations are solved in Fourier space. Parallelisation is achieved through domain decomposition in real and Fourier space. Results from a simulation showing a two-dimensional Alfèn wave filamentation instability are shown; these are the first simulations of this 2D Alfèn wave decay process

    Characterization of the Ca2+-gated and voltage-dependent k+-channel slo-1 of nematodes and its interaction with emodepside

    Get PDF
    The cyclooctadepsipeptide emodepside and its parent compound PF1022A are broad-spectrum nematicidal drugs which are able to eliminate nematodes resistant to other anthelmintics. The mode of action of cyclooctadepsipeptides is only partially understood, but involves the latrophilin Lat-1 receptor and the voltage- and calcium-activated potassium channel Slo-1. Genetic evidence suggests that emodepside exerts its anthelmintic activity predominantly through Slo-1. Indeed, slo-1 deficient Caenorhabditis elegans strains are completely emodepside resistant. However, direct effects of emodepside on Slo-1 have not been reported and these channels have only been characterized for C. elegans and related Strongylida. Molecular and bioinformatic analyses identified full-length Slo-1 cDNAs of Ascaris suum, Parascaris equorum, Toxocara canis, Dirofilaria immitis, Brugia malayi, Onchocerca gutturosa and Strongyloides ratti. Two paralogs were identified in the trichocephalids Trichuris muris, Trichuris suis and Trichinella spiralis. Several splice variants encoding truncated channels were identified in Trichuris spp. Slo-1 channels of trichocephalids form a monophyletic group, showing that duplication occurred after the divergence of Enoplea and Chromadorea. To explore the function of a representative protein, C. elegans Slo-1a was expressed in Xenopus laevis oocytes and studied in electrophysiological (voltage-clamp) experiments. Incubation of oocytes with 1-10 µM emodepside caused significantly increased currents over a wide range of step potentials in the absence of experimentally increased intracellular Ca2+, suggesting that emodepside directly opens C. elegans Slo-1a. Emodepside wash-out did not reverse the effect and the Slo-1 inhibitor verruculogen was only effective when applied before, but not after, emodepside. The identification of several splice variants and paralogs in some parasitic nematodes suggests that there are substantial differences in channel properties among species. Most importantly, this study showed for the first time that emodepside directly opens a Slo-1 channel, significantly improving the understanding of the mode of action of this drug class

    Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements

    Full text link
    A new technique has been developed at TRIUMF's TITAN facility to perform in-trap decay spectroscopy. The aim of this technique is to eventually measure weak electron capture branching ratios (ECBRs) and by this to consequently determine GT matrix elements of ββ\beta\beta decaying nuclei. These branching ratios provide important input to the theoretical description of these decays. The feasibility and power of the technique is demonstrated by measuring the ECBR of 124^{124}Cs.Comment: 9 pages, 9 figure
    corecore