2,062 research outputs found

    An integrated study of earth resources in the state of California using remote sensing techniques

    Get PDF
    The University of California has been conducting an investigation which seeks to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Most of the work has concentrated on California's water resources, but with some attention being given to other earth resources as well and to the interplay between them and California's water resources

    Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves

    Get PDF
    Individual processes shaping geographical patterns of biodiversity are increasingly understood, but their complex interactions on broad spatial and temporal scales remain beyond the reach of analytical models and traditional experiments. To meet this challenge, we built a spatially explicit, mechanistic simulation model implementing adaptation, range shifts, fragmentation, speciation, dispersal, competition, and extinction, driven by modeled climates of the past 800,000 years in South America. Experimental topographic smoothing confirmed the impact of climate heterogeneity on diversification. The simulations identified regions and episodes of speciation (cradles), persistence (museums), and extinction (graves). Although the simulations had no target pattern and were not parameterized with empirical data, emerging richness maps closely resembled contemporary maps for major taxa, confirming powerful roles for evolution and diversification driven by topography and climate

    Demographic shifts, inter-group contact, and environmental conditions drive language extinction and diversification

    Get PDF
    Humans currently collectively use thousands of languages1,2. The number of languages in a given region (i.e. language “richness”) varies widely3–7. Understanding the processes of diversification and homogenization that produce these patterns has been a fundamental aim of linguistics and anthropology. Empirical research to date has identified various social, environmental, geographic, and demographic factors associated with language richness3. However, our understanding of causal mechanisms and variation in their effects over space has been limited by prior analyses focusing on correlation and assuming stationarity3,8. Here we use process-based, spatially-explicit stochastic models to simulate the emergence, expansion, contraction, fragmentation, and extinction of language ranges. We varied combinations of parameter settings in these computer-simulated experiments to evaluate the extent to which different processes reproduce observed patterns of pre-colonial language richness in North America. We find that the majority of spatial variation in language richness can be explained by models in which environmental and social constraints determine population density, random shocks alter population sizes more frequently at higher population densities, and population shocks are more frequently negative than positive. Language diversification occurs when populations split after reaching size limits, and when ranges fragment due to population contractions following negative shocks or due to contact with other groups that are expanding following positive shocks. These findings support diverse theoretical perspectives arguing that language richness is shaped by environmental and social conditions, constraints on group sizes, outcomes of contact among groups, and shifting demographics driven by positive innovations, such as new subsistence strategies, or negative events, such as war or disease

    Inferring macro-ecological patterns from local presence/absence data

    Get PDF
    Biodiversity provides support for life, vital provisions, regulating services and has positive cultural impacts. It is therefore important to have accurate methods to measure biodiversity, in order to safeguard it when we discover it to be threatened. For practical reasons, biodiversity is usually measured at fine scales whereas diversity issues (e.g. conservation) interest regional or global scales. Moreover, biodiversity may change across spatial scales. It is therefore a key challenge to be able to translate local information on biodiversity into global patterns. Many databases give no information about the abundances of a species within an area, but only its occurrence in each of the surveyed plots. In this paper, we introduce an analytical framework (implemented in a ready‐to‐use R code) to infer species richness and abundances at large spatial scales in biodiversity‐rich ecosystems when species presence/absence information is available on various scattered samples (i.e. upscaling). This framework is based on the scale‐invariance property of the negative binomial. Our approach allows to infer and link within a unique framework important and well‐known biodiversity patterns of ecological theory, such as the species accumulation curve (SAC) and the relative species abundance (RSA) as well as a new emergent pattern, which is the relative species occupancy (RSO). Our estimates are robust and accurate, as confirmed by tests performed on both in silico‐generated and real forests. We demonstrate the accuracy of our predictions using data from two well‐studied forest stands. Moreover, we compared our results with other popular methods proposed in the literature to infer species richness from presence to absence data and we showed that our framework gives better estimates. It has thus important applications to biodiversity research and conservation practice

    Environment-Induced Changes in Selective Constraints on Social Learning During the Peopling of the Americas

    Get PDF
    The weaponry technology associated with Clovis and related Early Paleoindians represents the earliest well-defined evidence of humans in Pleistocene North America. We assess the technological diversity of these fluted stone points found at archaeological sites in the western and eastern halves of North America by employing statistical tools used in the quantification of ecological biodiversity. Our results demonstrate that the earliest hunters in the environmentally heterogeneous East used a more diverse set of points than those in the environmentally homogenous West. This and other evidence shows that environmental heterogeneity in the East promoted the relaxation of selective constraints on social learning and increased experimentation with point designs

    Drivers of geographical patterns of North American language diversity

    Get PDF
    Although many hypotheses have been proposed to explain why humans speak so many languages and why languages are unevenly distributed across the globe, the factors that shape geographical patterns of cultural and linguistic diversity remain poorly understood. Prior research has tended to focus on identifying universal predictors of language diversity, without accounting for how local factors and multiple predictors interact. Here, we use a unique combination of path analysis, mechanistic simulation modelling, and geographically weighted regression to investigate the broadly described, but poorly understood, spatial pattern of language diversity in North America. We show that the ecological drivers of language diversity are not universal or entirely direct. The strongest associations imply a role for previously developed hypothesized drivers such as population density, resource diversity, and carrying capacity with group size limits. The predictive power of this web of factors varies over space from regions where our model predicts approximately 86% of the variation in diversity, to areas where less than 40% is explained

    Resuscitation and quantification of stressed Escherichia coli K12 NCTC8797 in water samples

    Get PDF
    The aim of this study was to investigate the impact on numbers of using different media for the enumeration of Escherichia coli subjected to stress, and to evaluate the use of different resuscitation methods on bacterial numbers. E. coli was subjected to heat stress by exposure to 55 °C for 1 h or to light-induced oxidative stress by exposure to artificial light for up to 8 h in the presence of methylene blue. In both cases, the bacterial counts on selective media were below the limits of detection whereas on non-selective media colonies were still produced. After resuscitation in non-selective media, using a multi-well MPN resuscitation method or resuscitation on membrane filters, the bacterial counts on selective media matched those on non-selective media. Heat and light stress can affect the ability of E. coli to grow on selective media essential for the enumeration as indicator bacteria. A resuscitation method is essential for the recovery of these stressed bacteria in order to avoid underestimation of indicator bacteria numbers in water. There was no difference in resuscitation efficiency using the membrane filter and multi-well MPN methods. This study emphasises the need to use a resuscitation method if the numbers of indicator bacteria in water samples are not to be underestimated. False-negative results in the analysis of drinking water or natural bathing waters could have profound health effects
    corecore