857 research outputs found

    User's Guide for ERB 7 Matrix. Volume 1: Experiment Description and Quality Control Report for Year 1

    Get PDF
    The Nimbus 7 ERB MATRIX Tape is a computer program in which radiances and irradiances are converted into fluxes which are used to compute the basic scientific output parameters, emitted flux, albedo, and net radiation. They are spatially averaged and presented as time averages over one-day, six-day, and monthly periods. MATRIX data for the period November 16, 1978 through October 31, 1979 are presented. Described are the Earth Radiation Budget experiment, the Science Quality Control Report, Items checked by the MATRIX Science Quality Control Program, and Science Quality Control Data Analysis Report. Additional material from the detailed scientific quality control of the tapes which may be very useful to a user of the MATRIX tapes is included. Known errors and data problems and some suggestions on how to use the data for further climatologic and atmospheric physics studies are also discussed

    User's Guide for ERB 7 SEFDT. Volume 1: User's Guide. Volume 2: Quality Control Report, Year 1

    Get PDF
    The Nimbus-7 ERB SEFDT Data User's Guide is presented. The guide consists of four subsections which describe: (1) the scope of the data User's Guide; (2) the background on Nimbus-7 Spacecraft and the ERB experiment; (3) the SEFDT data product and processing scenario; and (4) other related products and documents

    Jamming in finite systems: stability, anisotropy, fluctuations and scaling

    Get PDF
    Athermal packings of soft repulsive spheres exhibit a sharp jamming transition in the thermodynamic limit. Upon further compression, various structural and mechanical properties display clean power-law behavior over many decades in pressure. As with any phase transition, the rounding of such behavior in finite systems close to the transition plays an important role in understanding the nature of the transition itself. The situation for jamming is surprisingly rich: the assumption that jammed packings are isotropic is only strictly true in the large-size limit, and finite-size has a profound effect on the very meaning of jamming. Here, we provide a comprehensive numerical study of finite-size effects in sphere packings above the jamming transition, focusing on stability as well as the scaling of the contact number and the elastic response.Comment: 20 pages, 12 figure

    High-resolution imaging at the SOAR telescope

    Full text link
    Bright single and binary stars were observed at the 4.1-m telescope with a fast electron-multiplication camera in the regime of partial turbulence correction by the visible-light adaptive optics system. We compare the angular resolution achieved by simple averaging of AO-corrected images (long-exposure), selection and re-centering (shift-and-add or "lucky" imaging) and speckle interferometry. The effect of partial AO correction, vibrations, and image post-processing on the attained resolution is shown. Potential usefulness of these techniques is evaluated for reaching the diffraction limit in ground-based optical imaging. Measurements of 75 binary stars obtained during these tests are given and objects of special interest are discussed. We report tentative resolution of the astrometric companion to Zeta Aqr B. A concept of advanced high-resolution camera is outlined.Comment: Accepted for publication in PASP. 14 pages, 9 figures, 2 tabl

    Parity Effect and Charge Binding Transition in Submicron Josephson Junction Arrays

    Full text link
    We reconsider the issue of Berezinskii-Kosterlitz-Thouless (BKT) transition into an insulating state in the Coulomb-dominated Josephson junction arrays. We show that previously predicted picture of the Cooper-pair BKT transtion at T = T_2 is valid only under the condition that T_2 is considerably below the parity-effect temperature (which is usually almost 10 times below the value of superconductive transition temperature), and even in this case it is not a rigorous phase transition but only a crossover, whereas the real phase transition takes place at T_1 = T_2/4. Our theory is in agreement with available experimental data on Coulomb-dominated Josephson arrays and also sheds some light on the origin of unusual reentrant temperature dependence of resistivity in the array with nearly-criticial ratio of Coulomb to Josephson energies.Comment: 4 pages, Revtex, to be published in JETP Letters, April 9

    Angoricity and compactivity describe the jamming transition in soft particulate matter

    Full text link
    The application of concepts from equilibrium statistical mechanics to out-of-equilibrium systems has a long history of describing diverse systems ranging from glasses to granular materials. For dissipative jammed systems-- particulate grains or droplets-- a key concept is to replace the energy ensemble describing conservative systems by the volume-stress ensemble. Here, we test the applicability of the volume-stress ensemble to describe the jamming transition by comparing the jammed configurations obtained by dynamics with those averaged over the ensemble as a probe of ergodicity. Agreement between both methods suggests the idea of "thermalization" at a given angoricity and compactivity. We elucidate the thermodynamic order of the jamming transition by showing the absence of critical fluctuations in static observables like pressure and volume. The approach allows to calculate observables such as the entropy, volume, pressure, coordination number and distribution of forces to characterize the scaling laws near the jamming transition from a statistical mechanics viewpoint.Comment: 27 pages, 13 figure

    Force distributions in a triangular lattice of rigid bars

    Full text link
    We study the uniformly weighted ensemble of force balanced configurations on a triangular network of nontensile contact forces. For periodic boundary conditions corresponding to isotropic compressive stress, we find that the probability distribution for single-contact forces decays faster than exponentially. This super-exponential decay persists in lattices diluted to the rigidity percolation threshold. On the other hand, for anisotropic imposed stresses, a broader tail emerges in the force distribution, becoming a pure exponential in the limit of infinite lattice size and infinitely strong anisotropy.Comment: 11 pages, 17 figures Minor text revisions; added references and acknowledgmen

    Entropy maximization in the force network ensemble for granular solids

    Get PDF
    A long-standing issue in the area of granular media is the tail of the force distribution, in particular whether this is exponential, Gaussian, or even some other form. Here we resolve the issue for the case of the force network ensemble in two dimensions. We demonstrate that conservation of the total area of a reciprocal tiling, a direct consequence of local force balance, is crucial for predicting the local stress distribution. Maximizing entropy while conserving the tiling area and total pressure leads to a distribution of local pressures with a generically Gaussian tail that is in excellent agreement with numerics, both with and without friction and for two different contact networks.Comment: 4 pages, 3 figure
    • …
    corecore