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A long-standing issue in the area of granular media is the tail of the force distribution, in particular,
whether this is exponential, Gaussian, or even some other form. Here we resolve the issue for the case of
the force network ensemble in two dimensions. We demonstrate that conservation of the total area of a
reciprocal tiling, a direct consequence of local force balance, is crucial for predicting the local stress
distribution. Maximizing entropy while conserving the tiling area and total pressure leads to a distribution
of local pressures with a generically Gaussian tail that is in excellent agreement with numerics, both with
and without friction and for two different contact networks.
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In a granular system the interactions among individual
grains are dissipative [1], so that an undriven system
eventually jams into a static, mechanically stable configu-
ration [2]. There are typically many jammed states con-
sistent with a given set of macroscopic constraints, e.g.,
fixed grain number and fixed pressure or volume. A granu-
lar packing can move from one jammed configuration to
another only under externally imposed fluctuations such as
shaking or tapping, because grains are too massive to
rearrange thermally [1]. Despite this nonequilibrium na-
ture, Edwards proposed that the methods of equilibrium
statistical mechanics might describe many material prop-
erties of jammed media [3]. A successful statistical me-
chanics of jammed systems would represent an important
theoretical handle on the physics of granular media. It
would permit the calculation of grain scale statistical prop-
erties, e.g., volumes [4] or stresses [5–8], from a small
number of global constraints. More ambitiously, it would
reproduce the complex behavior of granular media in terms
of well-defined internal variables.

In this Letter we derive an analytic expression for the
probability density ��p� of pressures on individual grains
in the bulk, which characterizes the strikingly heteroge-
neous force networks observed in granular solids [9]. We
work within the force network ensemble of Snoeijer et al.
[10] and confirm our results with highly accurate numerics.
The force network ensemble comprises all balanced force
configurations with a fixed global stress tensor h�̂i [11] on
a fixed hyperstatic contact network (see below). The en-
semble is both a minimal model for the statistics of local
stresses and a basic test for any statistical mechanical
theory of stress states in granular systems.

There is as yet no clear consensus on the form of the
distribution of local stresses in granular media. Of particu-
lar interest is the large-stress tail, which early experiments
found to be exponential when measured on the boundary
[12]. More recent measurements in the bulk [13], along

with numerics [14], find distributions that bend downward
on a semilogarithmic plot, suggesting faster than exponen-
tial decay. A number of proposed theories exploit an
analogy to the microcanonical ensemble to arrive at a
Boltzmann-like exponential tail [5–7]. These theories
should in principle apply to the force network ensemble,
but numerical simulations tailor-made to accurately sam-
ple large contact forces unambiguously show a Gaussian
tail in the force network ensemble in two dimensions [15].
As the present statistical mechanics approaches fail to
describe simple models like the force network ensemble,
they must be missing an important ingredient. We argue
that local force balance is absolutely crucial to describe the
correct stress statistics. In particular, we show that the
pressure distribution in the force network ensemble di-
rectly follows from entropy maximization, but only when
it respects a conserved quantity overlooked in previous
theories. This conserved quantity follows from force bal-
ance at the grain scale, and leads to excellent agreement
with numerics for both small and large forces.

Force network ensemble.—Snoeijer’s ensemble com-
prises all ‘‘force networks’’, i.e., sets of noncohesive con-
tact forces on a fixed granular contact network, for which
all N grains are in static force and torque balance [e.g.,
Fig. 1(a)]. For packings with more than a critical number of
contacts per grain zc, termed hyperstatic, there exist many
balanced force networks. zc � 4 (3) for frictionless (fric-
tional) 2D packings of disks [10]. All force networks on a
contact network with the same h�̂i and local force and
torque balance can be sampled uniformly by a series of
Monte Carlo moves, termed ‘‘wheel moves’’ [15,16].
Figure 1(b) gives an example. In the ensemble each force
network has an equal a priori probability (a flat measure),
in the spirit of the Edwards ensemble [3]. We illustrate our
approach in the case of the periodic frictionless triangular
lattice of circular grains before expanding to frictional
packings and different contact networks.
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As the global stress tensor h�̂i is fixed, the extensive
pressure in the system P �

P
ipi is conserved. The sum

runs over all grains and pi � Tr�̂i=2 is the pressure on
grain i. We restrict ourselves to isotropic states, h�̂i � 1, so
that P fully characterizes h�̂i.

Every force network, regardless of its (dis)ordering,
coordination number z, or friction coefficient �, has a
corresponding reciprocal tiling [17]. The systems in
Figs. 1(a) and 1(c) are a real and reciprocal pair; each grain
corresponds to a tile. Each face of the tile corresponds to
one of the grain’s contact forces. The face is oriented at a
�=2 rotation to the force f , and its length is proportional to
jf j. Because the grain is in static force balance, the faces
form a loop enclosing the tile [18]. By Newton’s third law,
the tiles fit together with no gaps.

Specifying the boundary forces on a packing establishes
the boundaries of its corresponding tiling, and hence the
tiling’s total area. Fixing h�̂i in a periodic system has the
same effect. Rearrangements of bulk forces, i.e., the wheel
moves, correspond to local exchanges of area among tiles.
The total tiling area is unaltered by wheel moves, and
therefore the area A �

P
iai is conserved. The sum runs

over all tiles and ai is the area of tile i [19]. The conser-
vation of A can be seen explicitly for the frictionless
triangular lattice in Fig. 1(d). Area conservation is a global
constraint that results from imposing local force balance. It
holds for arbitrary force balanced packings in 2D with
fixed h�̂i or boundary forces. It plays a crucial role in
determining the statistics of local stresses.

We scale the grain diameter in the triangular lattice such
that the pressure on a grain is the sum of its z � 6 normal
forces. The perimeter of a tile is then equal to the pressure
on the corresponding grain, making pressure a convenient
measure of local stress. Though the force distribution ��f�

is more commonly studied, we expect ��p� and ��f� to
have similar tails.

Entropy maximization.—Armed with the insight that the
force network ensemble involves two conserved quantities,
P and A, we explore their implications for the statistics of
local stresses. While previous work has incorporated the
conservation of P or its equivalent, the conservation of A
has heretofore been overlooked. We will show that the
conservation of A has a dramatic effect on the force
network statistics.

We calculate the probability density ��p� by maximiz-
ing entropy while conserving P and A. Each force net-
work corresponds to a set of pressures fpig, i � 1 . . .N. We
define P�p�!�p�dp as the probability of finding a pressure
p in the interval �p; p�!�p�dp�, where !�p� is the
density of states for pressures. The entropy S is the loga-
rithm of the number of ways of constructing force net-
works with pressures fpig consistent with P�p�. In the
thermodynamic limit [6]

 S � �
Z 1

0
�P�p� lnP�p��!�p�dp: (1)

The experimentally accessible probability density ��p� is
related to P�p� by ��p�dp � P�p�!�p�dp.

Weighting all force networks equally does not corre-
spond to a flat measure on the pressures, i.e., !�p� �

const. The contact forces ffig on a grain, i � 1 . . . z, can
be taken as coordinates of its state space. We demand that a
grain explore only the regions of the space corresponding
to force and torque balanced, noncohesive forces. We
assume that, subject to these constraints and prior to im-
posing entropy maximization, the grain is equally likely to
be in any of its allowed states; this amounts to neglecting
correlations with neighboring grains [20]. The result is a
density of states that goes as !�p� / p�. The value of �
depends on the grain’s coordination number and the fric-
tion coefficient. For the frictionless triangular lattice, � �
z� 3.

The entropy is maximized subject to conservation of P
and A, as well as normalization of ��p�. This leads to
 

1 �
Z 1

0
��p�dp;

hpi � P=N �
Z 1

0
p��p�dp;

and hai �A=N �
Z 1

0
ha�p�i��p�dp:

(2)

ha�p�i �
R
a��ajp�da is the average area of a tile with

perimeter p; ��ajp� is the conditional probability a tile has
area a given perimeter p. Maximizing the entropy subject
to Eqs. (2) using Lagrange multipliers yields

 ��p� � Z�1p� exp���p� �ha�p�i�: (3)

Without the constraint on tiling area we would have � � 0
and an exponential tail: Incorporating local force balance

(a) (b)

(c) (d)

FIG. 1 (color online). A force network (a) on the periodic
frictionless triangular lattice. Edges represent contact forces;
larger forces are thicker. (b) A wheel move. Arrows represent
changes to the forces on each grain. (c) The reciprocal tiling
corresponding to (a). Larger forces map to longer lines. (d) A
move in the tiling. Shaded area is being exchanged among tiles.
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by means of the area constraint has qualitatively changed
the form of the distribution. Z, �, and � are determined by
substituting Eq. (3) in Eqs. (2). For frictionless systems a
scaling argument shows that ha�p�i is quadratic in the
thermodynamic limit [21]; we write ha�p�i � chai�
�p=hpi�2 and determine c from numerics. Thus the proba-
bility density ��p� has a generically Gaussian tail, as was
shown numerically for ��f� [15].

We employ umbrella sampling [15] on a periodic fric-
tionless triangular lattice with N � 1840 to numerically
determine ��p�. From the sampled ha�p�i, shown in
Fig. 2(a), we extract c 	 0:89. Figures 2(b)–2(d) compare
the corresponding probability density of Eq. (3) to nu-
merics. Theory and numerics are in excellent agreement,
even for ��p� as low as 10�8. The slight discrepancies at
high p can be attributed to finite size effects and spatial
correlations: due to force balance, neighbors of high p
grains are themselves more likely to be at high p. Thus
large pressures are less entropically favorable than sug-
gested by neglecting correlations.

Frictional lattices.—We now consider frictional trian-
gular (z � 6) and square (z � 4) lattices. A system with
friction coefficient � permits contact forces with both
normal component n and tangential component t 
 �n.
The pressure p remains the sum of normal forces on a
grain. Friction has two important consequences. The first is
that ha�p�i is not strictly quadratic. Friction permits tiles
with area a < 0, which occurs when tile faces overlap.

Nevertheless, on dimensional grounds we still expect
ha�p�i � p2 for large p. In numerics, deviations from a
quadratic form increase with �, but for all frictional sys-
tems we have studied quadratic scaling holds for p * hpi.
Hence Eq. (3) still yields Gaussian tails. Secondly, we find
that friction increases spatial correlations [20]. Conse-
quently, as in Ref. [7], we coarse-grain and study clusters
of m � 7 (9) grains and k � 30 (24) contacts on the
triangular (square) lattice. The frictional clusters have ex-
ponent � � 2k� 3m� 1 in their density of states. We find
ha�p�i for a cluster deviates much less from quadratic
behavior than its single-grain counterpart.

Lacking the exact form of ha�p�i for frictional systems,
we determine the Lagrange multipliers satisfying Eqs. (2)
using the numerically sampled ha�p�i. Theory and nu-
merics are again in excellent agreement, as seen in Fig. 3.

Infinite friction.—As the Lagrange multiplier � tends
towards zero with increasing � [Figs. 3(b) and 3(d), in-
sets], we investigate the limit �! 1. For finite friction
and circular grains, normal and tangential forces are
coupled through the force balance constraints on each
grain and the Coulomb constraint on each force. In the
infinite friction limit the Coulomb constraint has no effect.
For the triangular lattice there are three distinct contacts
per grain, and it is possible to choose tangential forces ftig
to balance forces and torques for any normal forces fnig.
The only constraints on the fnig are positivity, ni > 0, and
fixed P . This leads directly to a Boltzmann distribution
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FIG. 2 (color online). (a) Fitted (dashed) and numerical (solid)
average area of a tile with perimeter p. (b)–(d) Theoretical
(dashed) and numerical (solid) pressure probability distributions
for the frictionless triangular lattice with N � 1840. The addi-
tional numerical curves in (b) are from N � 460 and 115.

FIG. 3 (color online). (a),(b) Theoretical (dashed) and numeri-
cal (solid) pressure probability distributions for 7-grain clusters
in the frictional triangular lattice with � � 0:1, 0.5, 1.0, and 3.0.
(c),(d) Pressure distributions for 9-grain clusters in the frictional
square lattice with � � 0:5, 1.0, and 2.0. (b),(d) (inset) � of
Eq. (3) for various friction coefficients �.
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��n� � hni�1 exp��n=hni� with hni � P=zN. In contrast,
for systems with z� zc < 3, such as the square lattice, the
normal and tangential forces remain strongly coupled
through force balance even for infinite friction. We have
confirmed numerically that in the infinite friction limit the
Boltzmann distribution holds for the triangular lattice, and
that the normal force and pressure distributions in the
square lattice remain Gaussian.

Boundary forces.—To this point we have imposed a flat
measure on periodic force networks. We have also numeri-
cally investigated the frictionless triangular lattice with a
boundary subjected to a flat measure on the boundary
forces [22]. This produces by prescription an exponential
boundary force distribution, reminiscent of experiment
[12]. Nevertheless, we find that the force and pressure
distributions on grains at least six layers from the boundary
have Gaussian tails. This simple example demonstrates
that a boundary distribution may not provide direct infor-
mation about the bulk distribution.

Conclusion.—We have derived an analytic expression
for the pressure distribution in the 2D force network en-
semble and found excellent agreement with numerics.
Distinct from previous studies, we incorporate two con-
served quantities, a total pressure and a reciprocal tiling
area. The latter is a necessary consequence of local force
balance, and we conclude that it is crucial to understanding
stress statistics. As a result, large stresses obey Gaussian
statistics. This observation is robust to changes in contact
network (including disordered networks [15]), finite fric-
tion coefficient, and imposed measure.

We have not addressed the distribution at the unjamming
transition, which could have a signature in the local stress
statistics. Isostatic (z � zc) packings cannot be studied
within the force network ensemble. Similarly, our results
are restricted to two dimensions. A naı̈ve extension of the
reciprocal tiling to 3D suggests ��p� � e�p

�
with � �

3=2, while numerics find � 	 1:7� 0:1 [15] within the
force network ensemble. The discrepancy may be the result
of stronger spatial correlations than in 2D, where coarse
graining suffices, or it may signal new physics.

Importantly, along with recent experiments [9,13], our
results give serious cause to doubt that exponential statis-
tics are a generic property of jammed granular matter. At
the very least, more work is needed to distinguish bulk and
boundary phenomena and to clarify why measured bound-
ary forces show exponential statistics.
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[13] J. Brujić et al., Physica (Amsterdam) 327A, 201 (2003);
J. Zhou et al., Science 312, 1631 (2006).

[14] F. Radjai et al., Phys. Rev. Lett. 77, 274 (1996); C. S.
O’Hern et al., Phys. Rev. Lett. 86, 111 (2001); A. V.
Tkachenko and T. A. Witten, Phys. Rev. E 62, 2510
(2000); L. E. Silbert, G. S. Grest, and J. W. Landry, Phys.
Rev. E 66, 061303 (2002).

[15] A. R. T. van Eerd et al., Phys. Rev. E 75, 060302(R)
(2007).

[16] B. P. Tighe et al., Phys. Rev. E 72, 031306 (2005).
[17] J. C. Maxwell, Philos. Mag. 27, 250 (1864); G. de Josselin

de Jong and A. Verruijt, Cah. Gr. Franc. Rhéol. 2, 73
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