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INTRODUCTION



This guide is intended for the users of the Nimbus-7 ERB MATRIX


tape. MATRIX scientific processing converts the input radiances


and irradiances into fluxes which are used to compute basic


scientific output parameters such as emitted LW flux, albedo, and


net radiation. These parameters are spatially averaged and


presented as time averages over one-day, six-day, and monthly 
periods. All the parameters are written on the MATRIX tape as 
world grids, mercator projections, and north and south polar 
stereographic projections.



MATRIX data for the period November 16, 1978 through October 31,


1979 are presented in this document. A detailed description of


the prelaunch and inflight calibrations, along with an analysis


of the radiometric performance of the instruments in the Earth


Radiation Budget (ERB) experiment, is given in Section 1.


Section 2 contains an analysis of the data covering the period


November 16, 1978 through October 31, 1979. These two sections


are preprints of articles which will appear in the Nimbus-7


Special Issue of the Journal of Geophysical Research (JGR),
 

Spring 1984. When referring to material in these two sections,


the reader should reference the JGR. Section 3 contains


additional material from the detailed scientific quality control


of the tapes which may be very useful to a user of the MATRIX


tapes. This section contains a discussion of known errors and


data problems and some suggestions on how to use the data for


further climatologic and atmospheric physics studies.



Volume II contains the MATRIX Tape Specifications that provide


details on the tape format and contents.





SECTION 1. THE EARTH RADIATION BUDGET (ERB) EXPERIMENT -

AN OVERVIEW 
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THE EARTH RADIATION BUDGET (ERB) EXPERIMENT



AN OVERVIEW



1.. INTRODUCTION 

The Earth Radiation Budget (ERB) instrument aboard the Nimbus-7 satellite is an 

experiment for providing measurements of the radiation entering and exiting the 

earth-atmosphere system which when completely processed and analyzed are 

expected to greatly enchance our understanding of weather and climate. Specific 

ally, the objectives of ERB are to: 

(1) Obtain accurate measurements of the total solar irradiance, to monitor its 

variation in time and to observe the temporal variation of the solar' spectrum; 

(2) Determine over a period of a year or more the earth radiation budget on both 

the synoptic and planetary scales from simultaneous measurements of the incoming 

solar radiation and the outgoing earth reflected and earth emitted radiation, the 

outgoing radiation fluxes to be determined from fixed wide angle sampling at the 

satellite altitude as well as from scanning narrow-angle observations of the angular 

radiance components; 

(3) Acquire and analyze detailed observations of the angular distribution of the 

reflected and emitted radiation for various geographical and meteorological 

situations in order to develop angular distribution models for the interpretation of 

narrow-angle scanning radiometer measurements. 

The management of the Nimbus-7 spacecraft and all the experiments on board are 

the responsibility of the NASA Goddard Space FLight Center (GSFC). 'The GSFC 

was also responsible for instrument procurement and development. By means of an 
"Announcement of Opportunity" a Nimbus Experiment Team (NET) was selected for 

ERB which consisted of experts in the field to aid in prelaunch planning, 

calibration, algorithm development, post-launch sensor performance evaluation and 

initial data analysis. Table 1 lists the names and affiliations of the team members. 
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Table 1



ERB NET Members



*Jacobowitz, H. NOAA/NESDIS 

**Arking, A. NASA/GSFC 

**Campbell, G.G. CIRA, Colorado State U. 

* ** Coulson, K.L. University of California, Davis 

Hickey, J. R. Eppley Lab., Inc. 

House, F.B. Drexel University 

Ingersoll, A.P. California Inst. of Technology 

**Kyle, L. NASA/GSFC 

**Maschhoff, R.H. Gulton Industries Inc. 

Smith, G.L. NASA/LaRC 

Stowe, L.L. NOAA/NESDIS 

Vonder Haar, T.H. Colorado State University 

*Elected NET Leader 

* *Elected Members 

***Left the NET because of other committments 
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2. DEVELOPMENT OF ERB OBSERVATIONAL SYSTEMS 

Four factors can be identified that have influenced the development of satellite 

instrumentation for measuring earth radiation budget: 

(1) spacecraft constraints - power, data storage, mode of stabilization and satellite 

control; 

(2) viewing geometry - fixed wide/medium field of view radiometers and scanning 

medium/high resolution radiometers; 

(3) spectral band-pass requirements - isolation the spectrum into its shortwave 

(O.2Am - 4.0 ,Am) and longwave (5.0)m - 5.0Mm) componentsj 

(4) on-board calibration - shortwave using direct solar radiation and space, and 

longwave using a warm blackbody source and cold space. 

These factors allow a logical breakdown of ERB observational systems into three 

generations of instruments leading to the ERB experiment currently on Nimbus-7 

satellite. 

Historically, the development of ERB observational systems on low-altitude 

satellites has paralleled the overall advancement of rocket and spacecraft 

technology. Concurrently during the past two decades, the NIMBUS series of 

satellites were developed, providing a spacecraft platform for testing experimental 

concepts from 1964 through the 1970's (Raschke, et al., 1973). Interwoven among 

these various satellite programs were a number of scientific experiments that 

relate to observations of the earth radiation budget. 

The first generation of ERB type sensors were flown on satellites with mid-latitude 

orbit inclination angles, spin/space stabilized, lifetimes of months, and with modest 

or no data storage capacities. Some experiments employed fixed field, 
hemispherical radiometers with bi-color separation of spectral regions. The first 

such ERB measurements were initiated with the launch of the Explorer 7 satellite 

on 13 October 1959 (Suomi, 1961). Other experiments utilized the spin of the 
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spacecraft to scan the earth with instruments having telescope optics and band
pass filters. Both fixed and scanning radiometers were on several of the TIROS 

satellites. 

In the second generation of ERB instruments, rockets were powerful enough to 
inject satellites into polar, sun-synchronous orbits providing the opportunity of 
global data coverage every day. Spacecraft lifetimes extended to several years 
duration. Attitude control improved to 2 axes stabilization for the ESSA cartwheel 
configuration, and to 3 axes in the case of the NIMBUS series. Flat fixed field 

radiometers were flown on several ESSA spacecraft and later on the ITOS satellites 
having medium and wide field spatial resolutions. Shortwave response of 
instruments was monitored by direct solar calibration. Medium and high resolution 
scanning radiometers were flown on NIMBUS spacecraft employing a variety of 
band-passes in the shortwave and longwave regions of the spectrum. Longwave 

radiometers used a warm black source and cold space for on-board calibration. In 
addition, visible and infrared window radiometers on the ITOS satellites provided a 
wealth of ERB observations during the 1970s. 

The third generation of observational systems led to the development of the 
complete ERB instrument. It measured separately direct solar radiation, earth 
reflected solar and emitted terrestrial radiation (Smith, et al., 1977 and 
Jacobowitz, et al., 1978). Two RB instruments have flown NIMBUS 6 and 7on 
satellites in 1975 and 1978, respectively. Both fixed field radiometers and hi-axial 
scanning telescopes measured the shortwave and longwave radiation exiting the 
earth. Ten solar channels observed the solar spectrum during each orbit. It is 
noteworthy that channel 10c on NIMBUS 7 provided the first time series of 
accurate observations of the "variable" solar constant. The ERB experiment on the 
NIMBUS 7 satellite continues to provide observations as of this writing, and is the 

subject of this paper. 
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3. INSTRUMENT DESCRIPTION 

Three separate groups of sensors were used in the ERB aboard the Nimbus-7 which 

became operational in November 1978 (Jacobowitz et al., 1978). An almost 

identical sensor package was flown on the Nimbus-6 satellite which was launched in 

June 1975. A summary of these sensor details is given by Soule (1983a). 

One group of ten sensors monitors the solar flux over the spectral ranges given in 

Table 2. Another group of four sensors monitors the earth flux seen at the satellite 

altitude. As noted in Table 3 these sensors accept radiation from the near 

ultraviolet out to 50 pm. The third group of sensors consists of relatively narrow

field-of-view (FOY) earth scanners. As Table 4 indicates, they operated in the 

visible through the near infrared out to the very long wavelength portion of the 

spectrum. Four identical telescope scanners were required to cover most of the 

earth viewed by the wide FOY sensors so that intercomparisons could be made. 
Figure I shows the ERB sensor assembly mounted on the Nimbus satellite. 

ERB radiation measurement requirements included a fairly uniform sensitivity to a 

range of wavelengths from 0.3 to 50.0gAm and a linear response to changes in 

irradiance levels of several orders of magnitude. In addition, an excellent long

term (years) stability of detector response in a space environment was required. 

Thermopile detectors were selected for the solar and fixed earth-viewing channels 

1 through 14 primarily because in addition to having the desired spectral 

sensitivity, they also had the required response time capability. Pyroelectric 

sensors were used for the scanning channels 15 through 22 because of their very 

short response time. 

3.1 Solar Channels 

Figure 2 shows a cross-sectional drawing of the typical-filtered solar channel. 

Incoming radiation enters the sensor through a protective window. After passing 

through a spectral filter, it passes through a second window and strikes a 3M black

painted thermopile detector surface. The first protective window minimizes the 

effects of charged particles, whereas the second window reduces the effects of 

solar heating of the filter and reradiation to the detector. The whole interior of 

the cell was anodized to reduce the reflection of solar radiation onto the detector. 

5
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ORIGINAL PAGE W


OF POOR QUALITY



TABLE p Characteristics of ERB Solar Channels 

Noise 
Wavelength Equivalent



Limits, Irradiane.


Channel Pim 	 Filter W m-, 

I 0.2-3.8 Suprasil W 1.77 x 10-2


2 0.2 3.8 Suprasil W 1.77 x 10


3 (0 2 to) 50 None 1.43 x 10- 2



4 0.536-2.8 OG530 1.94 x 10-2


5 0.698-2.8 RG695 1.91 x 10-2


6 0.395-0.508 Interference 3.58 x 10-2 

Filter


7 0.344-0.460 Interference 5.73 x 10-2



Filter


10-
8 0.300-0.410 Interference 7.55 x 


Filter


9 0.275-0.360 Interference 0-94 x 10-


Filter


2.39 x 10-2[Oct M02 to) 50 None 

The unencumbered FOV for all channels is 10 . the maximum field


is 26 for channels I through 8 and 10C. The maximum FOV for


channel 9 is 28 . All are t)pcs of Eppley wire-wound thermopiles.


Values obtained from adiusted NIMBI IS Ar,I,,h



t7ARLF .3 Characteristics of ERB Fixed Wide-Angle FOV Channels 

Irradiane Noi.e 
Waelength Range Equivalent 

Limits. Anticipated, Irradiance. 
W m 2Filter 	 W M'2Channel pm 

36.55 x 10-II <02 to >50 None 	 -200 to +600 
12" <0.2 to >50 None 	 -200 to +600 6.55 x l0' 3 
13 	 0.2 to 3.8 To Suprasil W 0 to 450 6.55 x 10


hemispheres


14 	 0.695 to 2.8 RG695 
 0 to 250 6.65 x 10 - 3 


between two


Suprasil W 
hemispheres 

All channels hac type N3 thermopile sensors.,All channels have an unencumbered FOV of 121 and a 
maximum FOV of 133.3 . Channel 12 has an additional FOV sciection of 89.4 unencumbered, 112.4 
maximum. Output of these channels js a 3.9-s integral of the instantaneous readings 

'Channels II and 12 are redundant channels. Channel I I has black-painted baffles and is used for 
in-flight calibration of channel 12. Channel 12 has polished aluminum bafflesas did both channels 
NIMBUS 6. 
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ORIGINALOF POOR PAGE ,9QUALITY 

TABLI: CCharacter ics of FRB Scanning Channels 

Noi. 

Wa.~lcngth E:quivalent 

Channel 
Limits. 

pm Filter 
Radiance. 

W cm 2 sr t 
NIP, 

'W H, -. 
FOV, 
deg 

15 1g 02-48 Suprasil W 3.7 x 10" 6.65 x 10 9 0.25 x 5.12 
19-22 4.5-50 Deposited 1.8 x 10-s  1.73 x 10-'  0.25 x 5.12 

layers on 
diamond 
substrate 
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Each of the ten solar channels is an independent, individual modular element with a 

mated amplifier as part of the unit. The sensors are advanced versions of 

wirewound-type thermopiles. There are no imaging optics in the solar channels; 

only filters, windows, and apertures. No optical amplification is required to 

maintain high signal-to-noise ratios because of the high thermopile sensitivities and 

state-of-the-art electronics used. Channels 1 and 2 are duplicate, Channel 1 being 

the reference for Channel 2 for the in-flight calibration program. Channel 1 is 

ndrmally shuttered. 

Channels 4 and 5 contain broad bandpass filters with transmittance spectra 

matching those of the standard Schott glasses, 0G530 and RG695, of the World 

Meteorological Organization. (The RG695 glass is also used in Channel 14, one of 

the shortwave fixed earth-flux channels). The interference filters are deposited 

on Suprasil W (grade I) fused silica substrates to minimize degradation. The 

transmittance of a 2 mm thick piece of Suprasil W from 0.2 um to 5 um is shown in 

Figure 3. Blocking outside the primary transmission bands, is acheived by interface 

layers only. No radiation absorbing glasses are used. 

The spectral intervals in the 0.2 um to 0.526 pum, 0.526 um to 0.695um, and 0.20 

pm to 0.695 pm is obtained by differential treatment of the channel 4 and 5 data, 

together with readings obtained from Channel 2. Channels 1 through 8 have type 

N3 thermopiles; Channel 9 has type K2. Channel 10C has a modified model H-F 

self calibrating cavity element. The cavity is mounted onto a circular wirewound 

thermopile. The electric beater used for self calibration is energized when a 

"GO/NO GO" heater command is issued. The thermopile output and the heater 

voltage and current are then sub-multiplexed into the Channel 10C data stream. 

The solar channel assembly is located on the side of the spacecraft facing in the 

direction of spacecraft motion. The assembly can be rotated 20 degrees in 1 

degree steps to either side of the spacecraft forward direction in order to acquire 

an on-axis view of the sun under the expected variation of the satellite orbit plane 

with respect to the sun. As the satellite comes over the Antarctic region the sun is 

viewed within the unencumbered field for about three minutes. The unencumbered 

field is that for which the entire sun's image is contained in the receiver FOV. The 
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solar channels are monitored before and after solar acquisition in order to obtain 

the space radiation reference (or "zero-level" response). The outputs of the solar 

channels are sampled once per second. 

3.2 Wide-Angle Field-of-View Channels 

Figure 4 shows the typical optical arrangement of channels 13 and 14 earth

observing WFOV channels. The domes on channels 13 and 14 provide the same 

charged particle and infrared attenuation filtering as is the case for the solar 

channels. Channels 11 and 12 have no hemisphere-shaped windows and sense the 
entire spectral range from about 0.2 to 50 um. The FOV of each channel 

encompasses the entire earth surface visible from the Nimbus orbit. To allow for 

the possibility of a small angular misalignment of these channels with respect to 

nadir, the FOV acceptance angle is slightly larger than that required to view the 

earth disc. In addition, Channel 12 has an insertable stop, so that upon command, 

it can view slightly less than the entire earth surface. 

Channel 11 (normally shuttered) is a duplicate of Channel 12 and is used only 

occasionally as a calibration check of Channel 12. For Nimbus-7 the Channel 11 

baffles have been painted black in order to investigate a so called "space loading" 

induced signal offset. The earthward-facing surfaces of these channels are highly 

polished. Each employs a type N3 thermopile with a circular receiver. 

Channel 13, the shortwave (0.2um to 3.8 um) fixed earth-flux channel, is equipped 

with two hemispheres of Suprasil W (grade I) fused silica. The spectral band 

matches that of solar Channels 1 and 2. The difference in measured radiation 

between Channel 11 (or 12 with full field) and Channel 13 is the longwave 

terrestrial component. Channel 13 is similar to a precision pyranometer. 

Channel 14 has a broadband (Rc695) filter hemisphere, to match the band of 

Channel 5. The RG695 hemisphere of Channel 14 is between two Suprasil W, fused 

silica hemispheres. The outer one is thick to attenuate particle radiation which 

might damage the glass. The inner hemisphere is a characteristic IR blocker 

included in all precision pyranometers. 
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The measured irradiance values of channel 13 (0.2 to 3.8 ji m) and channel 14 (10.7 

to 2.8 11m) are determined from the measured counts. The difference between 

these two channels lies in the 0.2 to 0.7 jim and 2.8 to 3.8 jim spectral range. 

Portions of both of these spectral regions are highly absorbed by the atmosphere. 

However, in the 2.8 to 3.8 um a very small amount of energy compared to that in 

the visible spectral region, is radiated into space. Thus, the approximate 

irradiance difference between these two channels can be determined for channel 

comparison purposes. 

3.3 Narrow-Angle Field-of-View Scanning Channels 

The ERB has four optical telescopes arranged in a fan shape. Each telescope 

contains a short wave and long wave optical system. As shown in Figure 5, the 

optical hardware schematic of the narrow field-of-view (NFOV) scanning channels, 

the telescope focuses collected radiation alternately on one of two apertures. This 

is performed using a chopping wheel with mirrored teeth. When the mirrors are in 

the radiation beam, the radiation is reflected into the infrared optical system. The 

openings in the mirror teeth pass the radiation to the short-wave relay assembly. 

As noted in Figure 5, the short-wave relay assembly focuses reflected radiation via 

M3 through an appropriate filter onto the pyroelectric detector. 

The longwave portion of the scanning channels operates in a rather unique fashion. 

When a reflecting tooth is in the radiation beam the reflected radiation passing 

through the aperture is focused on the pyroelectric detector by the M5 mirror. It 

passes through a coated diamond longwave interference filter before striking the 

detector.



When the openings between the mirror teeth are in the optical path, blackbody 

radiation produced by a flat surface surrounding the aperture is reflected by M4 

and passes back through the aperture slit as shown in Figure 5. This reference 

radiation then is reflected by M5 passing through the coated diamond filter to the 

detector. As a result, the pyroelectric (ac) detector senses the difference between 

the Earth/atmosphere or external blackbody radiation and the internal reference 

blackbody radiation. 
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The scan head is on a gimbal mounted on the main frame of the radiometer unit. 

The gimbal arrangement allows the pointing direction of the scan head to be varied 
within a vertical plane by rotation of the scan head, and within a horizontal plane 

by rotation of the gimbal. The vertical motion is accomplished with a stepper
drive which rotates the scan head in steps of 0.25 degrees. "The horizontal gimbal 

rotation is driven by a stepper motor which rotates the gimbal in steps of 0.5 

degrees.



The FOV's of the four telescopes are rectangular, (0.25 degrees x 5.12 degrees), and 

are arranged so that at the horizon the upper corners of the FOV's lie along the 
earth's horizon as shown in Figure 6. The narrow-angle (0.25 degrees) side of the 

FOV is in the direction of vertical motion. The FOV's of the short wavelength 

channels (15 through 18) are coincident, respectively, with those of the long 

wavelength channels (19 through 22). 

The scanning channel data is recorded at 0.5 second intervals. Thus to produce the 

various integrated 0.250 x 5.120 aperture fields-of-view shown in Figure 6, the scan 

head is made to rotate at different stepping rates. For instance, for the 

approximate five by five degree field-of-view, the scanner is stepped twenty times 
in 0.5 seconds. The resultant integrated signal is recorded. In a simular manner 
the 2.50 x 5.120 FOV are produced by stepping the scanner ten times during 0.5 
seconds and recording the resultant integrated signal. 

To observe the radiance from various scenes over a wide variety of incident and 
emerging angles, there are five different scan modes. These routines are 

schematically illustrated in Figure 7. Four scan patterns are a composite of long 

and short grids shown in Figure 6 (a long grid in the forward direction is followed 
by a short grid in the cross-track direction and then concluded with a long grid in 

the aft direction). The fifth scan pattern is a composite of scan pattern 3 followed 

immediately by scan pattern 4. Scan modes 1, 2, 3, and 4 obtain a maximum 

number of angular independent views of a given geographical area. When the 
instrument is in one of these four modes of operation, that scan pattern is repeated 

every 112 seconds or every 700 km along the subpoint track. These four scan 
modes ensure the ability to obtain numerous observations in the principal plane of 
the sun, the plane in which the greatest angular variations in reflected sunlight 
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occur. Scan mode 5, which is the normal mode of operation yielding maximum 
earth coverage, is repeated every 224 seconds or every 1400 km along the subpoint 
track. 

Figure 8 shows a complete scan pattern projected on an imaginary sphere 
coincident with the earth's surface and fixed with respect to the satellite. The 
solid line with the arrowheads indicates the motion of a point on the earth's surface 
relative to the imaginary sphere and scan pattern. The small target areas 
considered for illustration are located at 40oN latitude in Figure 8. The shaded 
portions of the scan pattern indicate which FOV's contain the target area. The 
area is first observed near the forward horizon (in the direction of satellite motion) 
at a view angle of 58.5 degrees. During succeeding scan patterns, as the satellite 
approaches the area, the area is viewed at angles of approximately 56, 51, 49, 15, 
and 0 degrees. As the satellite moves away from the area, radiance observations 
are made over the other half of the scanning plane at view angles of 15, 40, 51, 47, 
and 58.5 degrees. Consequently, a fairly complete picture of the angular 
distribution of radiation emerging from this geographical area in the scanning plane 
is obtained. 
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Fig. 8. Scanning channel views of a geographical area near the sub

point tracks.
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4. PRE-LAUNCH CALIBRATION 

ERB radiometric accuracy requirements made traceability to NBS standards 

desirable. However, time and equipment limitations made this approach difficult 

to achieve in a rigorous manner. Thus it was necessary to calibrate each set of 

sensors (i.e., solar, WFOV earth and scanning) in a somewhat different unique 

manner. Cross checking both the prelaunch and flight data resulted in a number of 
compromise coefficients which can not be directly related to NBS or other 

standards.



Preflight calibration of the solar channels consisted of a number of 

intercomparisons and transfer operations. The reference for the absolute 

calibrations was the new World Radiometric Reference (WRI) scale which is 

embodied in a number of self-calibrating cavity radiometers. Channel 10C of the 

Nimbus 7 ERB is itself such a device. This new scale can be referenced to previous 

scales such as the International Pyrheliometric Scale (IPS 1956). The four major 

solar channels (1,2,3 and 10c) have been directly intercompared with self 

calibrating cavity instruments. 

For transfer operations a solar simulator was used as a source and a normal 

incidence pyrheliometer (NIP) was employed. Both of these are also traceable to 
the WRP. When calibrating the filtered channels (4,5,6,7,8 and 9) the NIP was 

fitted with a filter wheel containing filters matching the flight set. The incident 

irradiance is calculated using the measured irradiance and the appropriate filter 

factor for the particular filter. 

The ERB reference sensor model (RSM), which is a duplicate of the flight 

instruments relative to the solar channels, has been employed as a transfer and 

checking device throughout the Nimbus 6 and Nimbus 7 calibration programs, 

(Hickey and Karoli, 1974). Ali vacuum calibrations of the Nimbus 6 and 7 ERB 

solar channels could be referenced through the RSM as well are many of the 

calibrations performed at atmospheric pressure. 
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The solar channels were not calibrated during thermal vacuum testing of the 

spacecraft. Their calibrations were checked during an ambient test after the 

thermal vacuum testing. Final calibration values for the solar channels were 

expressed in units of Counts/Watt/meter 2 (C/Win2) relating the on-sun signal 

outpfit to the incident extraterrestrial solar irradiance in the pertinent spectral 

band of the channel. 

There were longwave and shortwave calibrations of Channels 11 and 12. The 

longwave calibrations were performed during thermal vacuum testing with a 

special blackbody source named the total earth-flux channel blackbody (TECH). 

The source was a double cavity blackbody unit designed for calibrating Channels 11 

and 12 after they were mounted on the ERB radiometer unit. It operated over a 

temperature range of 180K to 390K with an apparent emissivity under test 

conditions in vacuum of 0.995 or greater. Temperatures were measured and 

controlled to an accuracy of 0.1 0 C during these calibrations. These calibrations 

were performed during both instrument and spacecraft testing. The entire FOV of 

the channels was filled by the TECH including the annular ring which normally 

views space in the angular element between the unencumbered and maximum 

FOV's. Channel 12 was also calibrated for the shortwave response by employing a 

solar simulator whose radiation was directed normal to the detector in vacuum. 

The reference NIP was employed as the transfer standard during this calibration. 

Channels 13 and 14 were calibrated within their respective spectral bands only. 

These tests were performed in the same manner as the shortwave calibration of 

Channel 12. For Channel 14 the reference NIP was fitted with a matching RG695 

filter (as for Channel 5) to yield the proper spectral band. 

An angular response scan was performed on each wide FOV channel in order to 

relate the normal incidence calibrations described above to the overall angular 

response of the channels. 

The shortwave scan channels were calibrated by viewing a diffuse target. Three 

methods were employed. These were: viewing a smoked magnesium oxide (or 

barium sulphate) plate which was irradiated by the solar simulator, exposure in a 

diffuse hemisphere illuminated internally by tungsten lamps, and viewing the inside 
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of a diffusing sphere. For methods I and 3 the ref~renee instrument was a high 

sensitivity NIP calibrated in terms of radiance. The second method employed a 

pyranometer as reference instrument. The sensitivity values selected for use are 

an average of methods I and 3. Unfortunately these tests could only be performed 

at atmospheric pressure. The reason vacuum testing is desirable is because It has 

been found that atmospheric effects produce calibration values which are not the 

same as those measured in vacuum and vacuum operating corrections are required. 

Another calibration of these channels was the in-flight check target. With the 

channels in the shortwave check position (viewing the scan target) the instrument 

was irradiated by the solar simulator beam. This test was performed at normal 

incidence when the instrument was in vacuum. The reference was one of the 

reference NIP's. In air, the instrument was similarly calibrated at a number of 

angles both in elevation and azimuth to obtain the angular characteristics 

necessary for the reduction of in-flight shortwave check operations. 

The longwave scan channels were calibrated in vacuum at both the instrument and 

spacecraft level thermal vacuum tests. The sensors viewed a special blackbody 
source called the longwave scanning channel blackbody (LWSCB) which had a 

separate cavity source for each channel. A conventional procedure was used which 

covered the complete range of in-flight measurement possibilities. 
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5. IN-FLIGHT CALIBRATIONS AND RADIOMETRIC PERFORMANCE 

In-flight calibration for the solar channels does not exist except for channel 

10C whose cavity is heated by a precision resistance heater. Accurate monitoring 

of the voltage and current of the heater as well as the detector response yields the 

calibration sensitivity. This led to very precise determinations of the total solar 

irradiance (Hickey, et al., 1981). All thermopile channels (1-14) are equipped with 

the same heaters which are used during prelaunch activities to check whether the 

channels are functioning properly. The heaters are used as a rough check in the 

analysis of operational data. These channels are also equipped with an electrical, 

calibration which inserts a precision voltage staircase at the input to the entire 

signal conditioning stream. While the electronic calibration cannot be used to infer 

changes in the sensor or optics characteristics, it insured prevention of 

misinterpretation of electronic measurements. Analysis of the electronic 

calibration data has yielded no abnormalities. Channels 1 through 3 can be directly 

compared with channel 10C to assess their in-flight calibration. In addition, the 

degradation of channel 2 is checked by the occasional exposure of its duplicate 

channel 1 which is normally shuttered. 

The degradation with time of the solar channels 1 through 9 is depicted in Figure 9 

for the first 8 months of flight. Particular attention should be given to chanhels 6 

through 9 which contain the interference filters. Their curves show that a high 

rate of degradation occurred during the first two months followed by a short period 

of relative stability. After this the channels reversed the earlier trend and began 

to recover. After a little over four months in orbit three of the channels 

completely recovered while the remaining one (channel 7) almost recovered. 

Shortly thereafter channels 7 and 8 began to degrade again with rates that were 

much slower than those encountered initially. A discussion of the possible cause of 

the degradation and the mechanism for the recovery can be found in the paper by 

Predmore, et al., (1982). In spite of these degradations and recoveries Hickey, et 

al., (1982) showed that solar variability in the near ultraviolet could still be derived 

from the data. 
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Fig 9 Percent degradation of the solar channels during the first eight months after launch. 
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Channel 12 calibration relies on the stability of the normally shuttered matching 

channel 11. Also, when both channels 1 and 11 are shuttered the effective 

blackbody temperature of each shutter measured radiometrically may be compared 

with their monitored temperatures. Channels 13 and 14 have no inherent in-flight 

calibration capability. They rely on occasional looks at the sun near spacecraft 

sunrise or sunset when the satellite is pitched to permit solar radiation to be 

indident on the channels. 

Periodic in-flight checks of the shortwave scanning channels' (15-18) calibration 

were accomplished by viewing the solar-illuminated, diffusely reflecting plate 

described earlier. When the scan-head was commanded to turn to the "shortwave 

check" position, a door opened exposing the laboratory-calibrated flat plate to 

sunlight which it reflected into the shortwave channels. Analysis of this data 

indicated a slow steady degradation of the plate surface even though the plate was 

securely stored behind a door between measurements. The longwave scan channels 

(19-22) were calibrated periodically by pointing the radiometers at space and then 

at an internal blackbody whose temperature was accurately monitored. They share 

the only true in-flight calibration capability with channel 10C. Additional checks 

have been made by comparing the fluxes observed by the WFOV channels with 

those deduced from the NFOV channels. 

The principal check on the calibration was made by intercomparing the observed 

wide-angle fluxes with those deduced from the narrow-angle radiances. In 

particular, the longwave scanning channels were used throughout because of the 

high confidence placed upon their measurements. As will be discussed in more 

detail later, the calibration of these channels (19-22) has remained stable to better 

than 1% throughout the lifetime of the scanners (= 20 months) as checked by an 

onboard calibration blackbody and cold space. Channels 11 and 12 were compared 

with these channels by restricting the comparison to be performed only on the 

night side of the earth and for an approximate two week period. 

Scanning channel radiances covering a complete scan cycle (112 seconds) were 

utilized to yield an estimate of the WFOV irradiance. These were compared with 

the actual WFOV irradiances averaged over the same time period. Under the 

assumption that the irradiances derived from the scanning channels were absolutely 

correct, regression analyses yielded corrected values of the WFOV _gain 

sensitivities. Table compares these new values with the prelaunch sensitivities. 
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TABLE St In-Flight Calihbration Checks of NIMBUS 7 ERB 

Shortae NFOV Channels 


From From From 

Channel 
Prelaunch 

Value 
Diffuse 
Target 

Sno% 
Target 

W/N 
Comparison 

15 3.617 3.917 3.957 3.914 
16 4236 4.723 4.791 4.761 
17 4.550 4.841 4,891 4.873 
Il 3616 4.133 4.256 4249 

Sensiti'.ity kcjW m '-Sr- '. 
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TABLE 6. INFLIGHT CALIBRATION CHECKS OF NIMBUS-7 ERB WFOV CHANNELS



Sensitivity (Cts/Wm - 2) at 250C 

Ch. Wavelength Prelaunch From W/N 

No. Band (Mm) Value Intercomp. 

11 0.2 -50 1.49166 1.492 

12 0.2 -50 1.72326 1.596 

13 0.2 -3.8 1.939 1.870 

14 0.2 -2.8 4.179 4.030 

An estimate of the shortwave fluxes during the daytime could be made by 
subtracting the observed longwave fluxes based upon the scanning channels from 

the total fluxes (shortwave plus longwave) obtained from adjusted channel 12 
values (i.e. using the calibration sensitivities derived on the night side of the 

earth). These shortwave estimates were compared with the shortwave fluxes 
deduced from the shortwave scanning channels (discussed later) as well as that 

measured by channel 13, again for an approximate two week period. The 
calibration sensitivity obtained is shown in Table 6. Since a direct intercomparison 

could not be obtained for channel 14, an adjusted sensitivity value was given on the 
basis that any proportional errors in the prelaunch sensitivity of channel 14 be the 

same as that for channel 13. The principal physical difference between the 
channels is the presence of an additional red dome filter in channel 14 between the 

same two suprasil-W domes which are also present in channel 13. 

Since the sensitivity for channel 11 derived from the wide/narrow (W/N) 

intercomparison was nearly identical to the prelaunch value, the prelaunch value 
was accepted. Before deciding upon the value for channel 12, we considered one 

additional calibration that had been performed for channel 12. Employing a solar 
simulator whose direct beam illuminated the channel, a gain of 1.607 counts/watt 

m- 2 was obtained, which differed only 0.7% from the value obtained in the W/N 

intercomparison. For this reason the solar simulator calibration was accepted. 
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In order to assess the stability of the channels with time, the regression analyses of 

the data from the W/N intercomparisons were performed for selected intervals 
throughout the first year in orbit. Figure 10 shows the percent deviation of the 
sensitivities from their initial values for channels 12W (W refers to wide as opposed 
to narrow when the field-of-view limiter was in place) and 13 as a function of the 

day of the year. Positive deviations are degradations. Channel 12W remained 
stable to within +2% while channel 13 appeared to have suffered a net degradation 
of a little over 3%by the end of the year. Figure 11 is a plot of the regression 
offsets (W/m2) for the same time period. Channel 12W varied over the range of 1 
to lOW/m 2 returning after 1 year to within 1 W/m2 of the initial value. The offset 

for channel 13 varied from -7 to +6 W/m2 returning at the end of the year to within 
2 W/m2 of its initial value. Channel 14 could only be properly analyzed by 

comparing data periods exactly one year apart. 

As a result, calibration adjustments were applied to the channel 13 irradiances 
which not only attempted to correct for the channel sensitivity but it also was to 

correct for the degradation of the filter dome with time. 

As analysis of year to year changes in the irradiances for channel 14 indicate that 
little or no degradation occurred. Therefore, a constant calibration adjustment 

was applied to correct only for the sensitivity. 

The sensitivity (count/Wm-2Sr- 1) and offset (Wm- 2 Sr- 1 ) for the longwave scanning 

channels (19-22) were periodically checked during the nineteen months they 
operated by performing 2-point calibrations. This consisted of observations of an 
onboard calibration blackbody and cold space, both of which the scan head was 
commanded to view. It is important to note that the signal produced by these 

sensors represents the difference between the target and an internal blackbody 
reference. Shown in Figure 12 is the percent sensitivity deviation of each channel 
from their initial values plotted versus the day number of the year. The fact that 

the variations remain within +1% of their initial values is evidence of the inherent 
stability of this unique calibration system. The corresponding offset shown in 
Figure 13 remained within +1 Wm- 2 Sr- 1 of their initial values, which again 
indicates stability. 'his is the prime reason that they are used in the W/N 

intercomparison analysis. 
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The noise levels associated with these channels were obtained by computing the 

standard deviations of the observed signals when viewing space, the shortwave 

check target (SWCK), and the longwave blaekbody target (LWCK). Normal 
- 2 Sr - 1 distributions with standard deviations of 1 to 2 Wm resulted from these 

static views. This data indicated that these channels had low noise levels. 

The shortwave scan channels (15-18) were analyzed a number of different ways. 

First, the mean computed shortwave flux, obtained from channel 12 and the 

longwave scan channels for about a two week period was compared with the mean 

flux for the same period deduced from each scanning channel. Using the predicted 

flux as the absolute truth, as before, the scanning fluxes were assessed as being too 

high by 7 to 17.5% (Vemury et. al., this issue). his meant that the sensitivities 

should be adjusted up by this amount. Table 7 shows the adjusted sensitivity from 

the W/N intercomparison along with the prelaunch values. 

TABLE 7. INFLIGHT CALIBRATION CHECKS OF NIMBUS 7 ERB



SHORTWAVE NFOV CHANNELS



Sensitivity (Cts/Wm- 2 Sr ~1)
 


Ch. Prelaunch From From From 

No. Value Diffuse Target Snow Target W/N Intercomp. 

1'5 3.617 3.917 3.957 3.914 

16 4.236 4.723 4.791 4.761 

17 4.550 4.841 4.891 4.873 

18 3.616 4.133 4.256 4.249 
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Another way that the calibration was checked was by commanding the telescopes 

to view the onboard diffuse target that was illuminated by the sun at the time of 

the satellite crossing of the southern terminator. During the prelaunch phase, a 

solar simulator was the source of illumination. The signal level of each channel in 

counts was divided by the solar signal in counts as measured by channel 2, 

cbrrected for channel degradation. This ratio of counts was further corrected to 

that for normally incident radiation. Comparison of the ratio determined in orbit 

with that before launch showed again that the channels in orbit appear to read 

higher by nearly the same percentages as that discussed above. Correction of the 

sensitivities based upon this test yielded the values also shown in Table 6. 

An additional check was made by observing scenes consisting almost entirely of 

cloud free snow or ice surfaces and comparing them with published ground-based 

observations of such surfaces. By eliminating observations whose solar zenith 

angles were greater than 700 and whose satellite zenith angles were greater than 
450; the comparison reduced to noting the brightness levels of nearly isotropic 

surfaces. Again, similar results shown in Table 6 were noted. All of these results 

point to an apparent increase in sensitivity after launch. The variation in the ratio 

of the observed to the predicted flux using the prelaunch calibration values are 

shown in Figure 14 as a function of the day number of the year. Also, the results 

of the observations from the check target are plotted. Channels 15-17 exhibit 

great stability in the W/N intercomparison results while the check target results 

show that the ratios decrease as time increases. This indicates that the check 

target was degrading. Proof of this resulted from a comparison of the snow 

surface observations discussed above with similar observations one year later. 

Practically no difference occurred from one year to the next for channels 15-17. 
Computations of the standard deviation of observations of the shortwave target 

and blackbody again indicate the low noise level of the channels 15-17. The noise 

level of channel 18 increased dramatically by the end of 1978. 
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6. DATA PROCESSING AND PRODUCTS 

The basic equations needed to convert from raw ERB data counts to radiometric 
values are given in Appendix A. Details regarding these equation and the 

coefficients used will be found in the calibration history, Soule, (1983b). The 
manner in which these radiometric measurements were converted into fluxes and 

albedoes is given in Appendix B. 

The ERB processing system is shown schematically in Figure 15. Raw ERB 

telemetry data and satellite ephemeris which are stored on magnetic tape were 

input to a program which generated Master Archive Tapes (MAT). These tapes 

contain calibrated radiances and irradiances and raw digital data values for all 

channels plus values of all monitored temperatures, satellite ephemeris and 

attitude data. As Figure 15 shows, the MAT is the prime source for the generation 

of all of the products. 

The Subtarget Radiance Tapes (STRT) are generated from narrow - angle scanning 

channel radiances and associated viewing angles which are sorted into one of 
18,630 regions (subtarget areas) covering the earth. In each of these areas a 

classification of the predominant surface type was made. The classification was 

based upon a number of non-ERB data sources one of which is the Temperature 

Humidity Infrared Radiometer (THIR) also on the Nimbus-7 spacecraft. The 
amount of high, middle and low cloudiness present in the subtarget areas is 

determined by analysis of the equivalent blackbody temperature derived from THIR 

observations made in the l1pm window region of the spectrum. The Air Force's 3-

D nephanalysis program was the source utilized for estimating the fraction of land, 

water, snow or ice present in a subtarget area within 24 hours of the ERB 

observations. Climatological data describing the surface configurations (plains, 

mountains, deserts, etc.) and dominant vegetation (grassland, savanna, etc.) are 

included. 

The data set contained on the STRT were then used to generate models of the 

angular distribution of the reflected solar and emitted terrestrial radiation for use 

in processing the narrow-angle data (Taylor and Stowe, 1984). Angular reflectance 

models were derived for four surface types (land, water, snow or ice and clouds) for 
ten ranges of solar zenith angle while only two models of the emitted radiation 
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were derived (one for latitudes greater than 700 while the other was for latitudes 

less than 700). 

The narrow-angle data with the aid of the angular dependence models (ADM) along 

with the solar and wide-angle data on the MAT were further processed by the 
program that generates the so called MATRIX tape to yield daily, six day and 

monthly averaged values of various radiation budget products (see Table 8). The 
basic algorithms used in the MATRIX production program are reviewed in Appendix 

B. The products were stored on the MATRIX tape on an approximately equal area 

world grid (500 km by 500 km) as well as on mercator and polar stereographic map 

grids. The data on the mercator and polar grids are utilized in the generation of 

analyzed contour maps which were recorded on microfilm. An analysis of the data 

on the MATRIX tapes is given in the paper by Jacobowitz, et al. (1983). 

In a manner similar to the MATRIX, socalled SAVER tapes were produced which 

contain seasonal averages (3 months) of all the products found on the MATRIX 
tape. The seasons are defined so that the winter season contains data from 

December through February, the spring season contains data from March through 

May, etc. Analyzed contour maps of these data are also output on microfilm. 

The MAT is also the source for the production of the Solar and Earth Flux Data 
Tape (SEFDT) which contains one month of solar data (channel I through 10) and 

earth flux data (channels 11 through 14) stripped from the MAT. 

As an aid to the analysis of the radiation budget data Zonal Mean Tapes (ZMT) 

were generated. The general manner in which the flux, albedo and net radiation 

were determined are given in Appendix B. The ZMT contains tabular listings of 

zonal averages of the solar insolation, earth emitted flux, albedo and net radiation. 
Also included are listings of the solar irradiances and selected latitude bands of the 

emitted flux, albedo and net radiation. The tables present on the ZMT were also 

placed onto microfilm. 
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All of the magnetic tapes and microfilm outputs described above and shown on 

Appendix C are archived at the NASA Space Science Data Center (NSSDC) in 

Greenbelt, Maryland. The single exception is the ADM tape which is expected to 

be archived in the future when it contains models for many more additional types 

of earth surface. 

Table 8



Appendix C. ERB MAPPER Products



DATA POPULATION OF WFOV OBSERVATIONS - ASCENDING NODE* 

DATA POPULATON OF WFOV OBSERVATIONS - DESCENDING NODE* 

DATA POPULATION OF WFOV OBSERVATIONS - ASC + DESC NODE* 

L.W. TERRESTRIAL FLUX FROM WFOV OBSERVATIONS - ASCENDING NODE 

L.W. TERRESTRIAL FLUX FROM WFOV OBSERVATIONS - DESCENDING NODE 

L.W. TERRESTRIAL FLUX FROM WFOV OBSERVATIONS - ASC+DESC NODE 

EARTH ALBEDO FROM WFOV OBSERVATIONS (0.2-4.0 urn)



EARTH ALBEDO FROM WFOV OBSERVATIONS (0.7-3.0, urn)



EARTH ALBEDO FROM WFOV OBSERVATIONS (0.2-0.7 urn)



NET RADIATION FROM WFOV OBSERVATIONS



DATA POPULATION OF NFOV OBSERVATIONS - ASCENDING NODE* 

DATA POPULATION OF NFOV OBSERVATIONS - DESCENDING NODE* 

DATA POPULATION OF NFOV OBSERVATIONS - ASC+DESC NODE* 

L.W. TERRESTRIAL FLUX FROM NFOV OBSERVATIONS - ASCENDING NODE 

LW. TERRESTRIAL FLUX FROM NFOV OBSERVATIONS - DESCENDING NODE 

L-W. TERRESTRIAL FLUX FROM NFOV OBSERVATIONS - ASC+DESC NODE 

EARTH ALBEDO FROM NFOV OBSERVATIONS 

MINIMUM EARTH ALBEDO FROM NFOV OBSERVATIONS 

NET RADIATION FROM NFOV OBSERVATIONS 
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NORMALIZED DISPERSION OF LW. TERRESTRIAL FLUX FROM WFOV 

OBSERVATIONS - ASCENDING AND DESCENDING NODE 
NORMALIZED DISPERSION OF EARTH ALBEDO FROM WFOV OBSERVATIONS 

STANDARD DEVIATION OF NET RADIATION FROM WFOV OBSERVATIONS 

NORMALIZED DISPERSION OF L.W. TERRESTRIAL FLUX FROM WFOV 

OBSERVATIONS - ASCENDING AND DESCENDING NODE 

NORMALIZED DISPERSION OF EARTH ALBEDO FROM NFOV OBSERVATIONS 

STANDARD DEVIATION OF NET RADIATION FROM NFOV OBSERVATIONS 
*NOT CONTOURED 
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7. FUTURE EARTH RADIATION BUDGET PLANS 

Present plans call for the production of a ten-year or longer Nimbus ERB global 

earth radiation budget data set. Eight years of this data have already been 

recorded and are being processed at the Goddard Space Flight Center under the 

guidance of the Nimbus ERB Science Team. There are three years of Nimbus-6 

ERB data, July 2, 1975 to October 1978 and five years of Nimbus-7 ERB data, 

November 16, 1978 to the present. In addition, intermittent Nimbus-6 ERB data 

exists through February 1981 which allows the two data sets to be accurately 

intercalibrated, (Ardanuy and Jacobowitz, 1984). Both the Nimbus-7 spacecraft 

and ERB instrument are in good health so that three or more additional years of 

data are expected. The chopper wheel on the scanner failed on June 22, 1980, 

hence slightly under 20 months of scanner are available from the Nimbus-7 ERB. 

Due to several problems only two months, July and August, 1975, of good quality 

Nimbus-6 scanner data were obtained. Thus, the principle components of the ERB 

archive will be the solar data and the wide field of view radiation budget data. 

As described above the present WFOV flight data calibration algorithms are based 

on the inflight calibrated longwave scanner data. New WFOV data calibration 

algorithms are presently being developed to process the ERB data when no IR 

scanner data are available. These new algorithms, described in Kyle, et al (this 

issue) are based on the WFOV total channels 11 and 12 which have proved to be 

very stable. Recent laboratory studies of the behavior of the ERB (Engineering) 

Model under dynamic, as opposed to equilibrium, conditions combined with ongoing 

analysis of the flight data gives us confidence in the validity of the new algorithms. 

Following its final validation, the revised processing software started production 

the post scanner ERB climate products in the summer of 1983. 

Although the major portion of the Nimbus-6 ERB data was recorded before the 

launch of the Nimbus-7 this data set suffered from a number of initial problems 

including only partial understanding of the inflight instrument environment and low 

data processing priorities. The Goddard Applications Directorate is proceeding to 

reprocess this data using modified Nimbus-7 ERB algorithms and software. Present 

plans call for the production of Nimbus-6 ERB climate products starting in 1984. 
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The diurnal variations in the components of the Earth Radiation Budget remains a 

principle source of uncertainty in estimating the actual Radiation Budget from the 

observations of a single sun synchronous satellite such as Nimbus-7. To obtain 

additional information on diurnal variability and to extend the data base the NASA 

Earth Radiation Budget Experiment (ERBE) plans to put identical Earth Radiation 

Budget instruments on three satellites: NOAA-F&G and the NASA ERBS- See 

Barkstrom and Hall (1982). The ERBS will be shuttle launched in August 1984 and 

placed in a non-sun-synchronous orbit inclined at 570 to the Earth's Equator and at 

an altitude of 610 km. Its orbit will precess 1300 per month. The NOAA satellites 

are sun synchronous, polar orbiting operational satellites and are launched as 

required to replace existing weather satellites. It is presently planned to launch 

NOAA-F in August 1984 into an 850 km orbit with a 2:30 pm local time ascending 

node equatorial crossing. NOAA-G should be launched about March 1986 but its 

equatorial crossing time has not been established. Midmorning, noon and 

midafternoon times are all being considered. Continued operation of the Nimbus-7 

ERB after the launch of the NOAA-F and the EBBS satellites will not only allow 

the Nimbus and ERBE data set to be firmly cross calibrated but will in addition 

enhance our knowledge of the diurnal variability of the Earth's radiation budget. 

Thus present plans call for producing high quality remotely sensed, global earth 

radiation budget data covering more than one Solar Cycle, June 1975 to the late 

198Ws. This data will greatly enhance our understanding of Earth-Sun interactions 

which produce our weather and climate. 
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Appendix A



BASIC RADIOMETRIC



CONVERSION ALGORITHMS



A-1 INTRODUCTION 

Initial ERB-6 equations were developed primarily to determine the ERB sensor 
characteristics before extensive development and testing had been done on them. 
Using sensor test results these basic equations were modified and used in the ERB
6data processing. 

During early ERB-7 algorithm work the equations developed for ERB-6 were used 
with modified coefficients. These modifications were based on extensive 
laboratory testing of both the components and complete ERB-7 sensor 
configuration. 

Post launch data analysis indicated a number of inter-earth channel 

inconsistencies. There also appeared to be differences between flight and 
laboratory results. As a result it was decided by the ERB Nimbus Experimental 

Team (NET) scientists to make a number of algorithm changes. These included: 

o 	 Use of the long wavelength scanning channels (19-22) as a radiation reference 
and sensor drift correction for the other earth viewing channels. 

o 	 Conversion of channels 19-22 blackbody based radiation data reduction to 

theoretical earth radiance data reduction using coefficients based on 106 
atmospheric theoretical emissions (This conversion will be found in Section 

A-6). 
The resultant basic algorithms are: 

A-2 ERB-7 SOLAR CHANNELS (1-10) 

For channels 1 to 9 the following is used: 

H 	 =(V - Vo)S V •,f(TB) 	 A-1 

=where f(TB) 1.0 + 0.01A (TB - 25.0oc) 
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H = Solar irradiance (watts/m 2)



V = Average on sun counts-


Vo - Average off-sun counts



SV = Channel sensitivity at 250c (counts/watt m- 2) 

A = Temperature correction coefficient (%per oc deviation 

from 250 C) 

TB = Thermopile base temperature (00) 

For ERB-7 channel 10e a self-calibrating cavity thermopile the equations used to 
convert counts to irradiance for this channel are: 

H10 e = Em cf/Sp(T) 	 A-2 

A-3E =E E(-13) + (+13) 
m os 2 

Sp(T) = S0 + S (TH -22 A-4 

where 

Hl 0c = Channel 10c irradianee (watts/m 2) 

Qf =Channel 10c correction factor for aperture area and non

equivalence (m- 2 ) 

Eos = Average channel 10c on sun counts 

E(+13) =Average channel N0 counts at +13 minutes from on-sun 

time. 
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S0 = Power sensitivity zero level (counts/watt) 

Sp = Power sensitivity slope (counts/watt o) 

TH = Channel 10c heat sink temperature (00) 

A-3 CHANNELS 11 and 12 
For these two wide field-of-view sensors the same basic equation was used to 

convert ERB-6 and ERB-7 counts to blackbody equivalent temperature irradiances. 

This equation for the fixed earth flux channels 11 and 12 was: 

4HT*FT4 [ AW- s F o Ts + EDFDa(T D +k ' V) A-5 

where 

HT = Target irradiance (watts/m 2)
 


FT = Configuration factor of the target



AW = Effective irradianee received by Thermopile (Watts/m 2)



r= Emissivity of the FOV stops 

Fs = Configuration factor of F0V stop 

Y= The Stefan-Boltzman constant 

Ts = Temperature of the FOV stop (K) (Thermister value) 

D = Emissivity of the thermopile 

FD = Configuration factor of the thermopile 

HT amount of energy per unit F.



HT * FT flux measured at satellite altitude





TD Temperature of the thermopile (K) (thermister value) 

k Correction factor for the temperature of the thermopile 

surface (OK/count) 

V =Thermopile output (counts) 

The equation developed for AW for ERB-7 is: 

AW V - [V + b(T - 250C)) 

s + a (T- 25oC) A-5 

where 

V= Zero offset in counts at 250C0 

b = Zero offset temperature coefficient (counts/OC) 

T = Module temperature (o) 

s = Channel sensitivity at 250c (counts/Watts m- 2) 
a Sensitivity temperature coefficient (counts/Watts m-2 /0C) 

A-4 CHANNELS 13-14 

For the ERB-6/7 fixed earth flux channels 13 and 14 the same equations were used 

to convert from counts to irradiance: 

HT =(V - VO)/S A-7 

s, =s [1.0 + (0,01) (A) (TB - 25OC)] A-8 



where 

HT = Target irradiance (watts/m2) 

V = Channel output (counts) 

Va Channel offset (counts determined at a 250C sensor 

temperature) 

s'= Corrected channel sensitivity (counts/watts m- 2) 

s = Channel sensitivity in vacuum at 250C 

A = Channel sensitivity correction factor (Mper oC deviation 

from 250C) 

TB = Channel thermopile base temperature (00) 

A-5 CHANNELS 15-18



For Scanning Earth Flux Channels 15 through 18 the ERB-6/7 equations for



converting counts to radiances are the same as those given above for fixed earth



flux channels 13 and 14, except that the units for s' are (counts/Watts m- 2
 


st-l).



A-6 CHANNELS 19-22



For ERB-6/7 the equation developed at NOAA used to convert from counts to



filtered radiance (NT) was:



NT = Nm + a o + a l V 	 A-9 

where 	 Nm = module computed filtered radiance (wm- 2ster - 1 ) 

ao = channel intercept (w-m- 2ster - 1) 

al=channel slope (w'm- 2 ster - I /count) 

V = channel output (counts) 
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Coefficients ao and al were determined from early inflight calibrations using as a


guide preflight thermal-vacuum calibrations.



The module radiance is computed by the solution of:



Nm=expfAo+Al ln(T +A2 n(T) 2 +A3 lnCT) 3 +A4 n(T) 43 A-10 

Here the coefficients Ai, i=0, 1,....4 were determined prior to launch for the 

temperature ranges 50K-200R, 200K-298K and 298K-400K 

If the filtered radiance reading from the channel is less than or equal to 30.0 W/m2 

sr the unfiltered radiance (R) is computed using the Stefan-Boltzmann law as 

follows: 

R -A-11 
4 

In R=In- ) +41n T=n( -G-) +4 Z An(inRf) A-1 2
71 iTrL 

n=o 

where 
=Rf = filtered radiance (Wm- 2sr- 1)(in MATGEN Rf NT) 

-1 )R = unfiltered radiance (Wm- 2sr 

T = equivalent blackbody temperature (K) (see Attachment B) 

0 = Stefan-Boltzmann constant 

An = regression coefficients determined as indicated in Soule 

(1984) 

T'is, knowing the filtered radiance and the regression coefficients, the unfiltered 

radiance can be computed. Different sets of regression coefficients are used 

depending on the filtered radiance value. For telescope readings of the filtered 

earth irradiance (Hf) greater than 30.0 Wm- 2sr - I sr the unfiltered radiance is 

computed using the formula: 

R =bo + bl Rf A-13 

where: 

bo = 8.8584 W/m 2 sr 

bI = 1.2291 

In MATGEN Rf =NT 50 



If the filtered radiance is greater than 300.0 W/m2 sr the unfiltered radiance value 

is set "out of range". 
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Appendix B



FLUX, ALBEDO, NET RADIATION



AND



MONTHLY AVERAGE COMPUTATIONS



B-1 INTRODUCTION



The following algorithms describe the scientific processing which converts input 

irradiances and radiances into fluxes. In the special eases of channels 5 and 10e, a 

constant value of the irradiance corresponding to a mean Sun-Earth distance was 

deduced. The irradiances for any given distance could then be computed by 

applying the inverse square law. 

It should be pointed out here that the ERB parameters which have been designated 

fluxes are actually flux densities with units of watts per square meter. 

For the WFOV, a calibration adjustment is applied to the measured irradiances 

which was based upon a statistical intercomparison of WFOV and NFOV data. 

MATRIX computations involving the WFOV shortwave (SW) flux parameters make 

use of these irradiances (fluxes) measured at the spacecraft. However, the WFOV 

longwave (LW) flux computation uses fluxes corrected to the top of the atmosphere 

by the following-

LW FluxWFOV = IrrLw. R2 satl(REarth+15) 2 

where Rsat is the distance from the Earth-center to the spacecraft, and REarth is 

the radius of the Earth (both in units of kilometers). Rarth is computed as a 

function of latitude. The effective radiative surface (top of the 

atmosphere) is assumed to be located at 15 km altitude. 

The computation of NFOV SW fluxes is significantly more complex than the WFOV 

processing. A procedure based on that developed by Raschke E., et al. (1973) was 

used to develop the following processing. First, the input radiances are corrected 

for anisotropy in reflectance dependent upon the surface type of the source target 
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area (SNOW/ICE, LAND, WATER, or CLOUD). This represents the application of 

the Angular Dependence Model (ADM). Next, the NPOV SW processing applies a 

correction for the directional reflectance characteristics of the source target area. 

In addition, this processing converts the instantaneous fluxes into mean daily NFOV 

SW fluxes. The complexity of these features means that a significant portion of 

MATRIX scientific processing is implemented in the NFOV flux computation. 

Averages over one-day, and monthly periods are computed for all the ERB 

scientific parameters. In addition, the net radiation is averaged over a six day 

.period which is the approximate repeat cycle of the satellite suborbits. 

Average of ERB parameters are written as world grids and as world maps to the 

MATRIX tape. Daily averaged ERB parameters are output to the MATRIX tape. If 

the day being processed is the end of a six-day cycle,, ERB cyclic averages are 

output. For the last day of the month, monthly averaged parameters are output. 

The MATRIX tape is complete when the last six-day cycle started within the 

calendar month covered by this MATRIX is completed. 

B-2 ALBEDO DERIVED FROM THE NFOV CHANNELS. 

INPUT: 
NS - shortwave radiance 4 - latitude of target area 

NL - longwave radiance I - longitude of target area 
S - solar constant:

6 - satellite zenith angle 0o 

C - solar zenith angle t - day of the year 

V - relative azimuth angle 



OUTPUT: i(€,1,t), 	mean daily albedo 

PROCESS: 

1. Compute reflectances, Ip assuming surface reflects diffusely. 

S L(t)cos 

where lt) kd(t) d(t) is the Earth-Sun distances and d is the 

annual mean Earth-Sun distance. 

2. 	 Determine target scene type M(land, water, snow/ice, or cloud) 

from the values of lIP and NL utilizing the scene selection 

algorithm diagramed schematically in Figure B-1. 

3. 	 Obtain the anisotropie factor R(G),c,M)* from the angular 

model corresponding to scene type M for the solar angle C and 

viewing angles 0 and $l. 

4. 	 Compute the refleetances, r, corrected for anisotropy. 

r(C,4,A,t,N) = 7fP(e,tcAA,t) R(OxOC,M) 

5. Compute the daily directional average reflected flux, WR. 

a n cosdit 

SR 

where r(c = O,dXtM) 

(r(C)/r(O))M are normalized directional reflectance models and tSR 

and t n are respectively the times of the local sunrise and noon. 

*Model derived from the Nimbus 7 ERB data 
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6. 	 Compute the daily average reflected flux averaged over all 
observations, WR

7. 	 Compute the daily averaged Insolation, Hs 

SRR12t 
9. 	 Compute the mean daily atbedo, A 

- ORIGIfNAL PAGE fflI
______"R OF POOR QUALITY 

Hs(4,t,A) 

b-3 	 OUTGOING LONGWAVE FLUX FOR THE NFOV CHANNELS 

INPUT: 
NL - lorgwave radiance 

0 - satellite zenith angle 

- latitude of target area 

t - day of the year 

OUTPUT: NL(t, X,t) - mean daily outgoing longwave flux. 

PROCESS: 
1. 	 Determine whether the FOV was during the daytime, D, or 

nighttime, N. 
2. 	 Compute the emitted flux, WD corresponding to a given 

observation. 

L(.N (41A90t) Wu(DkOo,4, xt)2t 	 cosesin6dB 

where N{DhN)(Be-. pN(DW. ' eoo 'A.t)



N(,)J * is model of the limb-aLenmAg.) 

*Model derived from Nimbus-? ERB data
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ORIGINAL PAGE M 
OF POOR QUALITY 

3. 	 Compute the daytime and nighttime fluxes WLD and WLN , 

averaged over all observations of the target areas. 
4. 	 Compute the daily averaged emitted flux, Wt; 

WL(0.X t) = TDWL(s. X,t)+T(NW(4Xt) 

24



where TD and TN are respectively the number of hours that the target is in 
daylight or is during the nighttime, respectively. 

B-4 	 NET RADIATION DERIVED PROM THE NFOV CHANNELS 

INPUT: 
A - Daily averaged albedo - latitude of the target area 
WL - daily averaged longwave flux A- longtitude of the target area 

HS - daily averaged insolation t - day of the year 

OUTPUT: (N (4,X,t), mean daily net radiation 

PROCESS: (4,Xt) - [1.o - i-c4.t)] . Hi(4t) WLC4sPX~t) 

B-5 	 ALBEDO DERIVED PROM THE WPOV CHANNELS 

INPUT: 

IS - shortwave irradiance 4- latitude of subpoint target area 
a - calibration adjustment slope A- longitude of subpoint target area 
b - calibration adjustment offset So - solar constant 

t - day of the year 

56




OUTPUT: 	 A(4,Xt), daily albedo 

I. 	 Compute the adjusted reflected flux, F



F =als +b



2. 	 Compute the maximum reflected flux, FM, that would be expected if 

the field-of-view was a perfectly reflecting diffuse surface. 

3. 	 Compute the values of F and FM by averaging over all observations in a 

target area. 

4. 	 Compute the daily albedo, A


A(¢,,t)= (V(tXk~t)/(VN(4,X,t)



B-6 	 OUTGOING LONGWAVE FLUX DERIVED FROM THE WFOV CHANNES 

INPUT: 

IT - total irradiance $ - latitude subpoint target areas 

IS - shortwave adjusted irradiances X - longitude of subpoint target 

area



Rsat - altitude of the satellite t - day of the year

FM ~- -- *



OUTPUT:WL(flN)(b,t) -mean outgoing flux for daytime or nighttime 

PROCESS: 1. 	 Compute the longwave irradiance, IL from the observation of the 

total and shortwave irradiances for both daytime and nighttime. 

LLD-ITD-ISD 	 FM> 0 & Is> 0 

ILN	 = i T N  FM = 0 or 	I s< 0 

2. 	 Compute the longwave flux adjusted to the top of the atmosphere 

(15 kn) 

WL(D7N)(sA ' t) 	 = IL (',t) HR I. 

R = mean radius 	 of the earth 
e 
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3. 	 Compute the longwave fluxes, WLD and WLN, averaged 
respectively over all observations of the target during the 
daytime and-nighttime. No daily averaged longwave flux was 

computed for single days. 

B-7 	 NET RADIATION DERIVED FROM THE WFOV CHANNELS 

INPUT: A - daily albedo .		 latitude of subpoint target-

WLD - daytime averaged longwave flux X - longitude of subpoint target 
WLN - nighttime average longwave flux t - day of the year 

Hs- daily averaged insolation k - see footnote 

OUTPUT: N(C X,t ) - mean daily net radiation 

PROCESS: N(4,X, t) =[(-i.0 - kA (,t) 

~+ 

2 

if WLD and WLD both exist; 

_D(,,t) [.0 - kA(0,X,t)1 • s (C,t) - WL 

if only WLD exists. 

*k is a factor relating the albedo observed generally near noon to the


mean daily albedo. k is computed only from directional reflectance models


and does not take account of the changing scene other than solar zenith


angles.
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ORIGINAL PAGE 9


OF POOR QUALITY



B-8 COMPUTATION OF THE MONTHLY MEAN VALUES 

X (.) is the monthly average of K (..,t) over all observation days of the 

month. 

(1) Albedo (NFOV) 

A(tX) = (WR(,X)/HS (0)) 

(2) Outgoing longwave flux (NFOV)- WL(4, ) 

(3) Net radiation flux (NFOV) - N (4,X) 

(4) Albedo (WFOV) ) kiF( "tM) 

where k and t.are the albedo correction factors and day of the year, respectively, 

for each of the observation days of the month. 

(5) Outgoing longwaves flux (WFOV) 

.'D !


S(WA) = WL(t'X)



2 

(6) Net radiation flux (WFOV) 

N(4,X) = [1.0 - A (4,X)], Hs(cX) - WL(o,X) 
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PIRHOCOMPUTE

I 
DETERMINE TARGET 


SURFACE FROM 

GEO DATA 


UNKNOWN
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OCEAN 

OINO NREJECT SW 
> 782> .5 >78.2DATA SAMPLE 

NSES = 4SNSURFNSURF =4 

CLOUDCLU
CLOUDNO,'PRO 
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ABSTRACT



The Earth Radiation Budget (ERB) as determined from the ERB 
experiment aboard the Nimbus-7 Polar-Orbiting Satellite is
 

presented in the form of time-latitude cross-sections, 
hemispherically and globally averaged time-plots, and annual 
global averages for the time period spanning November 1978


through October 1979. Comparisons are made between results


derived from the fixed Wide Field-of-view (WFOV) radiometers and 
those derived from the scanning Narrow Field-of-View (NFOV) 
radiometers. While there is excellent agreement in regard to the 
spatial and temporal variations, the absolute magnitudes differ. 
The NFOV yields outgoing 2longwave fluxes and albedos that are 
respectively about 4 W/m and 2.5% greater than those derived 
from the WFOV sensors. Also, limited simultaneous comparisons 
are made between ERB results and those from the AVHRR on the
 

NOAA-7 operational satellite.
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1. INTRODUCTION



The measurement of the spatial and temporal variations of the 
radiation budget of the earth is essential for our understanding 
of climatic change. Not only does the radiation budget influence


the behavior of other climate variables, but changes in these 
variables cause changes in the radiation budget itself. The 
measurements obtained with the ERB instrument (Jacobowitz, 1978) 
onboard the Nimbus-7 satellite yield a unique data set that is a


valuable source of knowledge of the radiation budget. The data 
set combines highly accurate and precise observations of the 
solar irradiance with very stable observations of the reflected


and emitted outgoing terrestrial radiation. These terrestrial 
observations are made simultaneously with fixed WFOV and scanning


NFOV radiometers. While the WFOV channels act as an integrator 
of the outgoing radiation over the entire earth's disc visible 
from the satellite, the NFOV channels permit variations within 
the visible earth's disc to be observed (mean resolution is 
around 150 km by 150 km). However, these NFOV channels are 
capable of only observing an earth scene from a limited number of 
directions. As a result, angular distribution models must be 
employed in order to interpret these directional observations in 
terms of an angularly integrated outgoing flux. To this end, the 
NFOV channels, themselves, have been an excellent source of data 
for constructing the required angular distribution models (Taylor 
and Stowe, 1983). 



2. THE DATA SET



Beginning on November 16, 1978 the ERB instrument has been


operating routinely on a 3-day ON and a 1-day OFF cycle with 
perhaps only a few minor interruptions of this schedule. Not too


long after the start of ERB operations it became apparent that 
when in scan mode the ERB NFOV channels were causing 
perturbations in the spacecraft attitude that were above the 
tolerance levels of the Limb Infrared Monitor of the Stratosphere 
(LIMS), also onboard the spacecraft. Since the LIMS experiment 
was expected to have a short lifetime (around six months) the ERB 
experiment had to make some compromises. Beginning on December 
10, 1978 and lasting through May 22, 1979 the scanning time 
period of the ERB channels was cut down from the three out of 
four days cyle to only two out of four days; two days of scanning

followed by two days of no scanning. While the NFOV channels 
were still electronically turned on during one of the non-scan 
days and they were pointed in the nadir direction, the data were 
not processed into mean fluxes or albedoes because of the rather


limited coverage that they offered. Also, during a very special


observation period for the LIMS experiment, the NFOV channels 
were commanded to a non-scan mode every time the satellite was 
over the latitudes from 800N to 27 S on the descending 
(mostly nighttime) portion of each orbit. This was in effect 
from January 4, 1979 to February 6, 1979. As a result, very few 
outgoing longwave measurements were made of the northern


hemisphere at night during this time interval. During all these 
compromises, all other channels continued to operate on a normal 
schedule.



The data set that will be analyzed here comes from the time 
period of November 16, 1978 through the end of October 1979 which 
nearly constitutes the first year of data.



The raw data to be processed were first sorted into a number of 
geographic target areas (2070) which are roughly of equal area 
and which span the entire globe. The albedo, outgoing longwave 
flux and net radiation flux were then computed for each target on


a daily, monthly, and seasonally averaged basis for both the WFOV


and NFOV channels. The monthly and seasonally averaged values 
were then plotted and analyzed on both mercator and polar


stereographic map bases. 0 Monthly and seasonally mean values were


also averaged over 4.5 latitude bands. The monthly latitude 
band averages were then utilized to generate time-latitude 
cross-sections in order to study the spatial and temporal

variability of the zonal average radiation budget. In addition, 
the time variation of the global and hemispherical monthly means 
were also analyzed.
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3. ANALYZED MAPS



Analyzed maps of the radiation budget parameters are extremely 
useful in depicting the spatial variations in the parameters. 
Month-to-month comparisons as well as satellite-to-satellite 
comparisons can be made for any given time period.



Figures 1(a), 1(b), and l(c) display three mercator maps of the 
albedo for March 1979 derived from three independent sensors.


Figures l(a) and l(b) were derived from the WFOV and NFOV


channels of ERB, respectively, while Figure l(c) was derived from


the Advanced Very High Resolution Radiometer (AVHRR) on the


TIROS-N satellite which has a resolution of about 1 km by 4 km at


nadir. It should be pointed out that the orbits of TIROS-N cross


the equator around 2:30 a.m. and p.m., while those for Nimbus-7 
cross the equator at 12:00 p.m. and midnight.



Note the degree of similarity in the patterns for the ERB NFOV 
and AVHRR maps, particularly in the regions of north Africa, the


northern part of South America, and the Pacific Ocean. Although 
the magnitudes do not appear to differ very much, some idea of 
the actual differences can be obtained by studying the 
displacement in corresponding contours in going from one map to 
the other. For example, the east-west 30 percent contour south


of Australia on the AVHRR map runs through parts of southern 
Australia on the ERB NFOV map indicating that the ERB values are 
higher in magnitude. A 40 percent contour is present in South


Africa on the ERB map which is absent on the AVHRR map. Overall,


the albedos derived from the ERB NFOV instrument are higher than


those derived from the AVHRR. The differences could be due to a 
number of causes. First, the AVHRR made measurements in the 
narrow spectral interval of 0.55 to 0.90 m while the ERB made 
measurements in the broad spectral band from 0.2 to 4 m.


Second, the AVHRR processing utilized an isotropic angular model


while the ERB employed models dependent upon viewing angle, solar


zenith angle, and surface type. An important additional
 

difference was that the ERB used directional models (reflectance 
versus solar zenith angle) to estimate the mean daily albedo from 
the albedo determined for the single observation time. This mean 
daily albedo is what is mapped in Figure 1. The albedo 
determined for the time of the TIROS-N orbits is what was plotted 
for the AVHRR. However, estimates of corrections to be made to 
the AVHRR albedo to yield the mean daily albedo are close to 
unity. The map from the ERB WFOV instrument has the same general


features as those for the other two maps but, because of its 
lower resolution, detailed variations present in the other maps 
are lost. Comparison of magnitudes again show that the ERB NFOV 
albedos are on the high side. 

A comparison of the corresponding daytime longwave radiation flux


for the three sensors is shown in Figure 2. Fairly good


agreement in the patterns is observed in the maps of the ERB NFOV
 

and AVHRR although the magnitudes of the fluxes obtained from the
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AVHRR are somewhat higher than those from the ERB. While the 
agreement is excellent for Australia, the AVHRR values are higher 
to. the north and east of Australia. Considering the 
approximately two and a half hours differences in the observation 
times of the two satellites, the monthly averages show no strong 
diurnal variability. Perhaps those regions for which there is 
good agreement, like the deserts, there is little diurnal change
during the two and a half hours. Those regions which exhibit 
larger differences may have a stronger diurnal variation. It 
should be noted that the AVHRR observations are made in the 10-11 
pm window region and are converted to a broad band flux using a 
regression relationship (Gruber, 1976; Gruber and Winston, 1978).
A comparison of the ERB WFOV maps with the other two maps show 
that the predominant features are still present in the WFOV map
although many smaller features can no longer be distinguished.
The magnitudes of the WFOV fluxes are lower than those of the 
NFOV and AVHRR. 
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4. TIME-LATITUDE CROSS-SECTIONS AND HEMISPHERICAL AND GLOBAL


TIME SERIES
 


Another very useful way of displaying the spatial and temporal 
variations of the radiation budget is by means of the time-
latitude cross-section. This is formed from the zonally averaged 
monthly means for all of the availble months with latitude on the 
vertical axis and month on the horizontal axis. Contours of 
equal values of the zonal averages are drawn on this grid similar 
to that found on the monthly maps. However, in these cross
sections we have time as one of the variables.



In addition to these time-latitude cross-sections, one can derive 
hemispherical and global means for each month by appropriately 
averaging the zonal means over each hemisphere as well as over 
the entire globe. Plots of these averages versus time (month in


our case) are extremely useful for understanding the nature of 
the annual variations.



Figures 3(a) and 3(b) show the time-latitude cross-sections for 
the albedo derived from the WFOV and NFOV channels, respectively,


for the period of time spanning November 1978 through October 
1979 and Figure 3(c) shows their difference.



Notice the tendency toward larger albedos at the higher latitudes


which may be caused by a number of contributing factors. One of 
these is the general increase of reflectivity with increase in 
the solar zenith angle. Solar radiation entering the atmosphere


is incident at zenith angles which are greater at higher


latitudes, hence the higher albedos there. This same factor can


be observed at a given latitude in the anngal cycle. For


example, consider the latitudes between 30 and 60°S. The


lowest albedos occur around December and January when the solar 
zenith angles are the lowest while the largest albedos occur in 
June when the solar zenith angles are the highest. This is also 
observed in the corresponding northern latitudes with the largest 
albedos occurring in December and the lowest occurring around 
June, the months corresponding to the largest and lowest solar 
zenith angles, respectively, for this hemisphere.



Another factor that will tend to cause the albedo to increase 
with latitude is the increase in the snow and ice cover. The 
very extensive Southern Antarctic continent with its snow and ice


cover yield zonally averaged albedos at the very high latitudes 
that are greater than those of the high northern latitudes. A 
third contributing factor is the occurrence of a greater amount
 

of cloudiness at the higher latitudes.



The seasonal variati-ons of the albedo discussed above do not 
apply to the tropical regions. In fact, there is a tendency 
toward higher albedos in the summer. This may be caused by the 
presence of a greater amount of cloudiness during the summer 
months compared to that for winter which may be associated with
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movements of the Intertropical Convergence Zone (ITCZ).



The consequences of all of the variations discussed above on the


hemispherical and global means can be seen in Figures 4(a) and 
4(b). In the northern hemisphere (hereafter referred to-as N.H.)


we observe two packs. One of these occurs around October and 
November while an even larger peak occurs around May, in spite of 
the fact that the larger albedos in the middle and higher


latitudes occurs around December. This can be explained on the 
basis that the greatest contributors to the hemispherical means 
come from the tropical latitudes. Not only is half the area of 
the earth confined below 300 of latitude, but the solar


insolation is much greater in these latitudes. Therefore, the 
albedos for the tropics are more highly weighted in the 
hemispherical or global means than the middle or higher 
latitudes. The influence of the middle and higher latitudes is 
still present and is the cause of the secondary peak. 

In the southern hemisphere (S.H.) the variation of the albedo in 
the tropics with season is much less pronounced than that


observed in the N.H. The variation of the hemispherical mean is


therefore driven by the variations in the middle and higher 
latitudes. The dip in the albedo towards June is directly 
related to the decreasing influence of the Antarctic continent 
whose insolation in June is nerly zero.



The combined effect of the two hemispheres can be seen in the 
global means varition where the prominent peaks and valleys of 
the curve for one hemisphere are nearly offset by the peaks and 
valleys of the other hemisphere. However, since the peaks of one


hemisphere do not occur at exactly the same time as the valley of


the other hemisphere there is some residual variation. Results 
derived for the first two years (July 1975 through June 1977) 
from the Nimbus-6 ERB WFOV (Jacobowitz, et. al. 1979) are also 
included on the global mean plots for comparison. Corresponding


months for the two years were simply averaged together and


plotted. The degree to which the curves for the two WFOV


instruments agree should be noted.



An examination of the difference contour plots (Figure 3(c)) 
shows that NFOV albedo is higher than that derived from the WFOV 
data. In the S.H. the greatest difference occurs around May 
through September in the mid-latitudes while in mid-latitudes of 
the N.H. the greatest differences are from August to February. 
In the tropics the greatest differences are confined to the 
period from March to November. The hemispherical and global mean 
plots clearly show these differences. In the mean there is the 
tendency for the difference to increase with time. While the 
NFOV albedo does show a small downward trend over the year, the 
trend is stronger in the WFOV values.



Figures 5(a), 5(b), and 5(c) show the time-latitude cross

sections for the outgoing longwave flux derived from the WFOV and


NFOV observations and their difference and Figures 6(a) and 6(b)

show the corresponding hemispherical and global averages. The 
flux is computed from both the ascending (mostly daytime) and 
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descending (mostly nighttime) portions of each orbit). The


prominent features to be noted are the strong seasonal effects in


the N.H. with the greatest flux occurring in the summer months.


In the S.H., the trend is similar but weaker due mainly to the 
moderating effect of the oceans which are much more plentiful in 
the S.H. (Note the lower value of the flux near the south pole
in winter compared to that near the north pole during its 
winter). In the N.H. time plot there is a strong maximum in the 
summer and a corresponding strong minimum in winter. The S.H. 
plot shows a small maximum in November and a shallow minimum 
around May. Globally the var-ations in time are driven by the 
variations in the N.H. with its greater land mass.



A comparison of the WFOV and NFOV values depicted in Figure 5(c)
shows that the fluxes derived from the NFOV data are generally 
greater than those derived from the WFOV data with the greatest
difference occurring around January and February in the regions 
of the lower latitudes. The reason for these large differences


in January and February can be traced to the operational


requirement discussed earlier, whereby the scan channels (NFOV) 
were placed in a non-scan mode for the portion of each descending 
orbit from 80°N to 27 0S for the time period of January 4 to 
February 6, 1979. This was done to provide the LIMS experiment, 
on the same satellite, an opportunity to make some important
observations without the perturbing influence of the ERB when 
scanning occurred.



As a result, the N.H. and a portion of the S.H. were inadequately

sampled at night. Therefore, the average longwave flux is


weighted strongly toward the daytime observations for this


period. Since the higher latitudes in this period have nighttime

fluxes that are not too different from their daytime values, the


sampling bias is not noticeable. However, this is not the case 
for the lower latitudes where strong diurnal variations are 
present. As a result, the daily averaged longwave fluxes are too


high. Figure 6(a) shows this clearly for the N.H. while the 
influence of the limited scan on the S.H. averages is much less. 
The global plot of Figure 6(b) shows the mean bias to be around 4



2
W/m 2 for the entire year and over 5 W/m in January and 
February. Included in the figure is the longwave flux derived 
from the Nimbus-6 ERB WFOV. Although the variations are similar 
to those we observed from the Nimbus-7 sensors, the magnitude is 
quite high. No explanation is available for the dip in the 
Nimbus-6 curve in January except that the value for January 1977 
was quite low.



Figures 7(a), 7(b), and 7(c) show the time-latitude cross

sections for net radiation flux for the WFOV and NFOV 
observations and their difference and Figures 8(a) and 8(b) show


the the hemispherical and global mean time plots. One thing that


is immediately evident from the time-latitude cross-sections is 
the way that most of the contours follow the declination curve. 
This suggests that the variation in the net radiation flux is 
strongly tied to the variation of the solar declination. This is


not too surprising since the solar insolation at any latitude is
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dependent upon the solar declination. The curves of the net 
radiation for the N.H. and S.H. show clearly the influence of the


declination. The maximum in the N.H. and the minimum in the S.M. 
occur in June while the minimum in the N.H. and the maximum in 
the S.H. occur in December, the months of the solstices. Also,


the maximum in the S.H. exceeds that in the N.H. This can be 
seen on the time-latitude cross-sections. This again is due to 
the variation in the solar insolation but this time it is caused 
by the variation in the sun-earth distance which is a minimum in


January and a maximum in July. While the solar declination would


have little effect on the "globally averaged" net radiation, the 
variation in the sun-earth distance is the dominant feature. The


deviation of the globally averaged insolation from its annual 
mean value is given in Figure 8(b). Both the WFOV and NFOV


curves of the net radiation are in phase with it. The net


radiation derived from the Nimbus-6 WFOV is included for


comparison. Notice how its curve lies between those for the 
Nimbus-7 WFOV and NFOV. 

The difference between the WFOV and NFOV estimates of the net 
radiation are a result of the differences in the albedo and 
outgoing longwave flux previously discussed. Averaged over the 
entire year, the net radiation deduced from the WFOV channels is 

about 14 W/m 2 greater than that deduced from the NFOV channels.
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5. SUMMARY AND CONCLUSIONS



Table 1 summarizes the annual averages of the hemispherical and 
global means derived from both the WFOV and NFOV channels. Both 
the WFOV and NFOV albedos are higher in the N.H. than in the S.H. 
which can be explained by the fact that there is a greater land 
mass in the N.H. On the average, land surfaces reflect more 
soiar energy than the oceans. We also'observe that the mean


longwave flux is slightly greater in the N.H. However, the


difference is close to the level of precision for either


instrument so that the result may not be significant. For the 
purpose of comparing these results with those derived from other 
observations, the global results from the Nimbus-7 ERB are


tabulated (Table 2) along with those derived from the Nimbus-6 
ERB WFOV, the series of NOAA Scanning Radiometers (Gruber, 1978;


Ohring and Gruber, 1983) denoted by SR, the satellite composite


derived by Ellis and Vonder Haar (1976) denoted by EV, and


finally that derived from the Nimbus-6 ERB NFOV data by Campbell


and Vonder Haar (1980) denoted by CV. With the exception of the 
albedo derived from the Nimbus-7 NFOV, all the results are fairly 
consistent. The longwave flux estimates from the scanning 
radiometers are biased on the high side. However, the results 
given have been repeated onboard three separate satellites, all



of which agreed to within 1 W/m 2 . Since the estimates were 
based upon the observations in a narrow band around the 11 m 
window region, one must suspect the algorithm which estimates the


broad band flux from the narrow band measurements as being the 
cause of the high estimates. A new algorithm has been developed 
which reduces the bias.



The high value of the albedo derived from the Nimbus-7 ERB NFOV 
channels is of concern since it is inconsistent with the other 
estimates although the latitudinal and month-to-month variations


are quite similar to those derived from the WFOV channels. Some 
recent studies (Stowe, et. al. 1983) have revealed that estimates


of the albedo were generally higher when the scanning channels 
viewed the earth at large nadir angles (above 56 ) compared to 
those made at lower angles. Since the number of observations 
made with this instrument tended to increase with an increase in 
the nadir angle, a sizeable bias in the results could have been


generated. An algorithm which would eliminate these biases from


the data is currently under investigation. Also under 
development are some refinements to the processing of the WFOV 
channels (Kyle, et. al. 1983) which are aimed at removing some 
biases in the data introduced by the satellite on-off cycle


(three days on, followed by one day off) as well as removing 
other biases caused by the influence of the shortwave and


longwave terrestrial and solar radiation on the filter domes and


detector modules.



The results presented in this article are not expected to be 
changed substantially by the modifications discussed above. 
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TABLE 1. 


Annual Avergaes of Global and 

Hemispheric Means of the Radiation Budget 


Derived from the Nimbus-7 ERB 


Albedo Longwave Flux Net Flux 

(%) (W/m ) (W/m2 

WFOV N.H. 30.9 229.4 8.1 

S.H. 30.2 228.1 13.7 

Global 30.6 228.8 10.9 

NFOV N.H. 33.6 233.1 - 5.1 

S.H. 32.7 232.3 - 1.8 

Global 33.1 232.7 - 3.4 
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TABLE 2.



Comparison of Nimbus-7 ERB Results with


Those from Other Observations



ALBEDO* LONGWAVE FLUX*



(W/m2)
(%) 
 

N-7 WFOV 31 229



N-7 NFOV 33 233



N-6 WFOV 31 235



SR 31 244



EV 30 236



CV 31 230



*All results have been rounded off to the nearest integer.



ii2





Removal of the biases in the NFOV albedo should yield values that


are much closer to those derived from the WFOV data. The


modifications to the WFOV are expected to decrease the downward


trend in the albedo bringing the variation more in line with the


trend observed for the NFOV albedo.



Overall, the Nimbus-7 ERB has yielded an excellent data set to


study the spatial and temporal variations on both the planetary


and synoptic scales. As results from additional months become


available, we will be able to analyze the interannual differences


essential to most studies of climatic change.
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SECTION 3. SCIENCE QUALITY CONTROL REPORT



3.1 OBJECTIVE OF SCIENCE QUALITY CONTROL



Before the Nimbus-7 ERB climate product data sets were archived 
for use by the scientific community, two levels of validation 
were performed by the Nimbus Experiment Team (NET). First, the


NET validated the scientific processing algorithms employed to 
produce the data sets. This step was completed early in 1982.


Once the algorithms were validated, the data were scientifically


validated to assure that it is physically reasonable and useful 
for scientific research. This second validation step was the 
objective of the Science Quality Control task. 

The approach employed in the Science Quality Control task was to 
establish criteria by which the climate product data sets could 
be tested for reasonableness and scientific validity. These 
criteria were then used in the analysis of each monthly MATRIX 
tape. An important function of Science Quality Control is the 
identification, definition, and categorization of the exceptions 
to these criteria. This document will provide that function. 
All known problems in the MATRIX data set will be discussed here. 
Known problems in the MAT Level I data (used as input data to 
the MATRIX processing) are briefly described in the next
 

subsection. Discussions of the problems found in the Science QC


Analysis of the MATRIX follow in the other sections of this 
document.



3.2 SUMMARY OF KNOWN PROBLEMS FROM THE MAT 

In this subsection, several problems inherent in the Level I MAT 
data set are discussed. These problems were not screened from 
MATRIX processing. Users of the MATRIX data set must consider 
these problems for their possible influence on the scientific use 
of the data. 

For a more detailed discussion of the scientific quality of MAT 
data, see Reference 1, the MAT Data User's Guide.



3.2.1 Degradation of Channel 13 and Channel 14



The Wide Field of View (WFOV) Channels 13 and 14 have been shown 
to degrade with time. Channel 13 has the more significant 
degradation with a rate of about 5% over the first year. 
Degradation of Channel 14 has been shown to be less than 1% (see 
Reference 1). Among the reasons given for this degradation are!


(i) thin film deposition on the ERB instrument optical surfaces,


and (2) radiation damage (aging) of the instrument optics.
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TABLE 3-1.



ERB World Grid Latitude Bands



Initial data processing in the ERB MATRIX program involves


sorting the ERB measurements as a function of geographical areas.


To accomplish this, the earth has been divided into 2070 target


areas, each about 500 Km square. The target area range and


latitude limits are given below:



LATITUDE LIMITS



BAND TARGET AREA RANGE LOWER LIMIT UPPER LIMIT 

1 1 - 3 -90.00 -85.50 

2 4 - 12 -85.5 -81.0 
3 13 - 28 -81.0 -76.5 
4 29 - 48 -76.5 -72.0 
5 49 - 78 -72.0 -67.5 
6 79 - 114 -67.5 -63.0 
7 115 - 154 -63.0 -58.5 
8 155 - 199 -58.5 -54.0 

9 200 - 247 -54.0 -49.5 

10 248 - 307 -49.5 -45.0 

11 308 - 367 -45.0 -40.5 

12 368 - 427 -40.5 -36.0 
13 428 - 499 -36.0 -31.5 

14 500 - 571 -31.5 -27.0 
15 572 - 643 -27.0 -22.5 

16 644 - 715 -22.5 -18.0 

17 716 - 795 -18.0 -13.5 
18 796 - 875 -13.5 - 9.0 

19 876 - 955 - 9.0 - 4.5 

20 956 - 1035 - 4.5 0.0 

21 1036 - 1115 0.0 4.5 

22 1116 - 1195 4.5 9.0 
23 1196 - 1275 9.0 13.5 

24 1276 - 1355 13.5 18.0 
25 1356 - 1427 18.0 22.5 
26 1428 - 1499 22.5 27.0 

27 1500 - 1571 27.0 31.5 
28 1572 - 1643 31.5 36.0 
29 1644 - 1703 36.0 40.5 

30 1704 - 1763 40.5 45.0 

31 1764 - 1823 45.0 49.5 
32 1824 - 1871 49.5 54.0 
33 1872 - 1916 54.0 58.5 
34 1917 - 1956 58.5 63.0 
35 1957 - 1992 63.0 67.5 
36 1993 - 2022 67.5 72.0 
37 2023 - 2042 72.0 76.5 

38 2043 - 2058 76.5 81.0 
39 2059 - 2067 81.0 85.5 

40 2068 - 2070 85.5 90.0 
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TABLE 3-2.



ERB Parameters



Parameter Number Description



1 	 Number of WFOV observations for which center of Channel Sub 
FOV falls within 	 a particular target area during AN.



2 	 Number of WFOV observations for which center of Channel Sub


FOV falls within a particular target area during DN.



3 	 LW Flux WFOV-AN is (CH12 - CH13) if Chl3 > 0 and Max. 
Ref. Energy(P5) > 0, otherwise is Chl2 during AN Computed 
on a daily and monthly basis. 

4 	 LW Flux WFOV-DN is (CH12 - CH13) if Chl3 > 0 and Max. Ref. 
Energy(P5) > 0, otherwise is CH12 during DN. Computed on a


daily and monthly basis.



5 	 Maximum Reflected Energy (.2-4 pm) for WFOV-AN is computed
daily and monthly for world grids. If FOV is in AN, compute 
irradiance CHIOC x scaling factor. 

6 	 Maximum Reflected Energy (.2-4 pm) for WFOV-DN is computed 
daily and monthly for world grids if FOV is in DN. Similar 
to Parameter 5. 

7 	 Maximum Reflected Energy (.7-3 pm) for WFOV-AN is computed 
daily. If FOV is in AN, compute irradiance CH5 x scaling 
factor.



8 	 Maximum Reflected Energy (.7-3 pim) for WFOV-DN is computed
daily. If FOV is in AN, compute irradiance CH5 x scaling 
factor. Similar to Parameter 7. 



TABLE 3-2.



ERB Parameters



(Continued)



Parameter Number Description



9 	 Reflected Energy (.2-4 pm) from. WFOV observations - AN. If 
FOV is in AN for the TA identified, CH13 irradiance 
accumulated and divided by number of observations gives 
daily Reflected Energy. Sum of daily values divided by 
number of days gives monthly Reflected Energy.



10 	 Reflected Energy (.2-4 pm) from WFOV observations - DN. 
Same as in Parameter 9, except FOV is in DN. 

11 	 Reflected Energy (.7-3 pm) from WFOV observations - AN. 
Same as in Parameter 9, except processes CH14 irradiance. 

12 	 Reflected Energy (.7-3 pm) from WFOV observations - DN. 
Same as in Parameter 11, except FOV is in DN. 

13 	 Earth Albedo (.2-4 pm) from WFOV observations.



Daily Albedo = Daily Parameter 9/Daily Parameter 5.



Monthly Albedo = 	 E(Daily Parm 36 x Daily Parm 13 x F)ZDaily Parm 36



SZA correction 	 F is to correct instantaneous Albedo to mean 
daily Albedo. 	 This is not calculated 2 if Parameter 1 = 0 or 
Parameter 5 = 0 or Parameter 36 < 4 W/m
 




Parameter Number 
 

14 
 

15 
 

nDaily 
 

16 
 

TABLE 3-2.



ERB Parameters



(Continued)



Description



Earth Albedo (.2-.7 im) from WFOV observations.



Daily Albedo = Daily Parameter 9 - Daily Parameter 1. 
Daily Parameter 5 - Daily Parameter 7 

Monthly Albedo E (Daily Parm 36 x Daily Parm 14 x FM Daily Farm 36 

Earth Albedo (.7-3 im) from WFOV observations.



Albedo = Daily Parameter ll/Daily Parameter 7



Monthly Albedo = Z (Daily Parm 36 x Daily Parm 15 x F)
 

E Daily Parm 36



Net Radiation (N) from WFOV observations is computed on


daily, cyclic, and monthly basis.



Daily: 	 N = (1 - A x F)AVINS - LWF; where A = P13, AVINS 

= P36, LWF = (P3 + P4)/2 when both P3 and P4 are 
present. If P3 is a filled value LWF = P4 and 
if P4 is a filled value LWF = P3. 

Cyclic: 	 Cyclic N = Z Daily P16/Cyclic P26.



Monthly: 	 Monthly N = Monthly P36 (1 - Monthly P13) -
Monthly P28. 



TABLE 3-2.



ERB Parameters



(Continued)



Parameter Number Description



17 	 SW Data Population of NFOV observations - AN. For daily 
value it is the number of observations which pass all


specified screening tests. For monthly value it is the


number of observation days.



18 	 SW Data Population of NFOV observations - DN. Same as in 
Parameter 17, except FOV is in DN. 

19 	 LW Flux from NFOV observations - AN. 

Daily Flux Eday@E 19 +4 20 + 21 + 22
 

Total Number of Observations



where 19 - 22 are radiances from CH19 thru 22, 4 is LW 
Angular Dependence Model function 

S
aly Parm1
Monthly Flux = N 19
No. ofof Days



20 	 LW Flux from NFOV observations - DN. Same as in Parameter


19, except the FOV is in DN.





Parameter Number 


21 


22 


TABLE 3-2.



ERB Parameters



(Continued)



Description 


LW Terrestrial Flux (FWA) NFOV Weighted average of AN and 

DN data. 


P19 x DAN + P20 x DDN 


Daily FWA AN + DDN 


where D is daylight hours based on latitude. 


Monthly FWA = Z Daily P21/No. of Days. 


Earth Albedo from NFOV Observations: 


Daily: i) Daily Reflected Energy (DRE) from Channels 15 

-18 radiances is computed according to: 


Eday T15 + '16 + P17 + T18 


DRE = Number of Observations 


ii) Calculate Albedo (A) using the equation: 


DRE

AVINS (P36) 


Monthly: ZDaily DRE/ ZDaily P36 




TABLE 3-2.



ERB Parameters



(Continued)



Parameter Number Description



23 Net Radiation (N) from NFOV observations.



Daily: N = AVINSUI - Albedo) - LW Flux
 

= P36(1 - P22) - P21



Cyclic: N = Z Daily P23/Cyclic P27



Monthly- N = Daiy 3



No. of Days
 


24 	 LW Data Population of NFOV observations - AN.



Daily: Number of Observations for each target area.



Monthly: Number of observation days.



25 LW Data Population of NFOV observations - DN. Same as in 
Parameter 24, exept spacecraft is in DN. 

26 Data Population of Averaged WFOV LW Flux (Parameter 28). 

Cyclic: Increment by one if daily P16 is a non filled 
value. 

Monthly: Increase counter by one if daily Pl and/or daily 
P2 is a non-zero value. 



TABLE 3-2.



ERB Parameters



(Continued)



Parameter 	 Number Description



27 	 Data Population of Averaged NFOV LW Flux (Parameter 21).



Cyclic: 	 Increment by one if daily P23 is not a filled


value.



Monthly: 	 Increment by one when both P24 and P25 have


non-zero value.
 


28 	 Averaged LW Terrestrial Flux from WFOV observations. The


monthly average is computed according to the following


equation:



Av = Monthly P3 + 	 Monthly P4


2 

If either monthly P3 or monthly P4 is zero, then the Av = 
the other. 

29 Normalized Dispersion of LW Flux from WFOV observations 

Calculate: 

x daily 	 P3 + daily P4


mean value of x



x
ND =standard deviation of 
 
mean value of x





TABLE 3-2.



ERB Parameters
 


(Continued)



Parameter Number 	 Description



Alternatively:



xI = ND(P3) = a (P3)/mean P3 

x2 = ND(P4) = a (P4)/mean P4 

X2 ]
ND = [l/2x2 

+1 2 

where a is the standard deviation. 

30 Normalized Dispersion of Earth Albedo (.2 - 4 pm) from WFOV 
observations. This is a monthly parameter calculated 
according to the equation: 

Std. Dev. of (daily P13)Mean of (daily P13)



31 	 Standard deviation of Net Radiaiton from WFOV observations.
 


32 	 Normalized Dispersion (ND) of Averaged LW Terrestrial Flux


from NFOV observations. This is calculated on a monthly


basis using the equation:



ND = Standard deviation of (daily 21)/Mean of (daily 21)





TABLE 3-2.



ERB Parameters



(Continued)



Parameter Number Description 

33 Normalized dispersion (ND) of Earth Albedo from NFOV 
observations. This is calculated on a monthly basis using 
the relation: 

ND = Std. dev. of daily P22 Mean of daily P22 

34 Standard deviation of Net Radiation from NFOV observations. 
Calculated for month using daily Parameter 23. 

35 Minimum Earth Albedo from NFOV observations from daily 

Parameter 22. 

36 Average Solar 
Parameter. 

Insolation is computed as daily and monthly 

Daily: AVINS = SOLINS (I,IL) + 180 - LON 
360 

{SOLINS (2,IL) - SOLINS (1, IL)} 

Monthly: ZDaily AVINS/No. of days 

where: 
AVINS = Ava. Solar Insolation 
SOLINS = Solar Insolation 
LON = Longitude 

37 Earth Albedo (.2 - 4 pm) from WFOV observations without 
Solar Zenith Angle correction. 



TABLE 3-3.



Daily, Cyclic, and Monthly ERB Parameters that are Output



This Table indicates as to which of the ERB Parameters is output 
for Daily World Grid, cyclic (WG and MAP) and monthly (WG and 
MAP). 

DAILY CYCLIC MONTHLY 
PARAMETER WG WG MAP WG MAP 

1 X - - X X


2 X - - X X


3 X - - X X


4 X - - X X


5 x - - x 


6 X - - X 

7 X - - x 

8 X - - X 


9 X - -x 


10 X - -x X 


11 X - X 


12 X - - X 


13 X - - X X


14 X - - x X


15 X - - X X


37 - - X X


16 X X X X X


17 X - - X X


18 C - - X 


19 X - - X X


20 X - - X X


21 X - - X X


22 X - - X X


23 X X - X X


24 X - - X X


25 X - - X X


26 - X - X X


27 - X - x X


28 - - - x X


29 - - - X X


30 - - - X X


31 - - - X X


32 - - - X X


33 - - - x x


34 - - - X X


35 - - - X X


36 X - - X -


X = YES 
- = NOT OUTPUT 
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A recalibration of the Channel 13 irradiances was performed by
the application of the Channel 13 Calibration Adjustment Table 
(CAT). The major goal of the CAT was to correct this 
degradation. However, analysis of the MATRIX albedo parameters
for Year-i indicates that a degradation persists in the Year-i 
Channel 13 irradiances after application of the CAT. Degradation

effects on the Channel 13 irradiances are further complicated by

the fact that the leading and trailing halves of the Channel 13 
filter dome apparently degrade at different rates (-see References


2 and 3).



3.2.2 Scanner Duty Cycle



The Narrow Field of View (NFOV) scanning telescope was 
occasionally operated in a mode which differed from the ERB


instrument duty cycle. An example of this is a case where the


scanner was in SCAN mode for one day, then in NADIR mode for one


day, and so forth. Another example is the so-called "LIMS


Compromise" where the scanner was set to NADIR mode on the


Descending Node portion of each orbit from 80 degrees North 
Latitude to 27 degrees South Latitude. The "LIMS Compromise" 
limited the ERB Scanner operations from January 4, 1979 through

mid April,1979 (see Appendix A). The effect of these different 
scanner duty cycles was to cause loss of whole orbits or portions

of orbits. This will cause data sampling problems to be induced


into the MATRIX data. Daily latitude band averages are severely

impacted by loss of orbits. This sampling problem shows up as 
large fluctuations in the data populations of the affected 
latitude zones (this will be discussed further in a later 
section). ERB parameters are averaged on a daily basis for each 
target area. The monthly average of an ERB parameter is then 
computed by averaging the target area averages for each data day
in the month. When a target area is poorly sampled for a 
particular day, there is a possibility that the poor sampling
will produce a bias in the monthly average. This is a major
problem in the Year-i data set for NFOV LW flux in the months of 
January and February. In those months, the "LIMS Compromise" was 
in effect. The Descending Node NFOV LW flnx was poorly sampled
in target areas in the Northern Hemisphere for most days. Normal 
levels of sampling in these target areas (on the Descending Node)

occurred only for one or two days each month. This resulted in 
unreliable monthly values of NFOV LW flux for target areas in the


Northern Hemisphere (both for Descending Node and for Total LW 
flux).



3.2.3 ERB Instrument Duty Cycle - Thermal Effects



During Nimbus Year-i, the ERB instrument was operated in a


one-day-off, three-day-on duty cycle. This duty cycle was


imposed on ERB by considerations of limited spacecraft power. 
Sometimes the duty cycle was different but the important thing is

that periodically the ERB instrument was powered off. When the 
instrument was turned on, a warmup period followed where the 
electronics approached an operating temperature. Data taken 
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during this warmup period is rejected by MATRIX processing (see 
Reference 4). This rejection is needed because the laboratory 
calibration of the ERB sensors was performed under steady state 
(constant temperature) conditions. The calibration equations 
used to produce the MAT are thus invalid during these warmup 
periods.



It has been pointed out (ERB Working Group Meeting #43; May 21, 
1982; Phillip Ardanuy, Research and Data Systems) that the


temperature does not remain stabilized after this warmup period.


During periods of changing instrument temperature, the ERB


irradiances are also impacted by this error in the calibration 
equations. Channel 13 is the most strongly affected channel. 
The indication of error in this case is an apparent drift in the 
offset of the sensors. The effect is that the measured


irradiances show a cyclic behavior that follows the ERB duty 
cycle. A method has been suggested for removing this effect from


the Channel 13 and 14 irradiances. This approach would add a 
variable offset to these irradiances which forces their value at


satellite midnight to be identically zero. This amounts to a 
recalibration of the sensor for zero input.



3.2.4 Dome Heating Effects on Channel 13 and Channel 14



It has been shown (References 5 and 6) that the Channel 13 and 
Channel 14 filter domes are radiatively heated and subsequently


reradiate onto the sensors. The effect of this reradiation is a


variable offset which contaminates the measured irradiances. The


laboratory study described in Reference 6 was performed on an ERB


prototype instrument set. LW radiaton from the Sun and the scene


being viewed were found to produce transient forcing, causing a 
time-lagged thermal response (offset) in the two sensors. The 
study reported in References 6 and 7 also found that the two 
channels showed a transient thermal response to SW heating by the


Sun. The SW response is thought to be due to a thermal gradient
 

(thermal wave) due to absorption of energy by the ERB instrument 
module.



The subject of LW heating can be handled but SW heating though 
understood qualitatively is quantitatively difficult to remove. 
SW heating is a problem which needs consideration and revision.



These effects despite their complexities, lend themselves to 
statistical analysis and accurate modeling based on the results 
of the studies mentioned above. An approach for recalibrating 
the MAT irradiances which will remove the effects of these


transient thermal offsets has been developed. The approach will


use the form of the corrections developed in Reference 4.



A calibration tape (DELMAT) is produced from the MAT irradiances


and used in MATRIX processing to recalibrate the Channel 13 and 
14 irradiances prior to scientific processing. This calibration 
approach has been applied in MATRIX production following the data


month of May, 1980 (after the NFOV scanner failed).



3-14





Channel 18 Failure
3.2.5 	
 

level output by Channel 18 occurredA sharp increase in the roise 
on Day 360 of 1978 (ERIS Working Group Meeting #35; March 26,\ 

1982; Michael Fromm, Research and Data Systems). Negative values\ 

for Channel 18 radiances occurred both at night and during 

daytime orbital segments. The NET decided that all Channel 18 

data after Orbit 880 (on Day 360) should not be processed by the 

MATRIX software. There is an indication that this noise problem 
in Channel 18 may have been due to interference from the stepper 

drive motor used to drive the NFOV scan head. 

3.3 PROBLEMS OBSERVED IN THE MATRIX DATASET



set listedMATRIX 	 data are
problems which were 	 observed in the 

here and briefly described


3.3.1 	 The LIMS Compromise



This problem has been discussed earlier (Subsection 3.2.2). The 

effect of the LIMS Compromise was to cause poor sampling of the 

NFOV Descending Node LW flux over the Northern Hemisphere. This



means that monthly averages of this parameter for January through 
March, 1979 have many target areas where only one or two days 

have contributed to the average. This would tend to make the 

NFOV LW flux and net radiation parameters invalid for scientific 
use (over the Northern Hemisphere) for these months. 

Parameter Inconsistencies3.3.2 	 NFOV Monthly 

During periods of scanty data the NFOV monthly average LW flux, 
albedo and net radiation (P21, P22, and P23) do not always form a



the net radiation equation. On a dailyconsistent set which obey 
basis 	 they do form a consistent set, however the monthly averages



for each 	 from the daily values.are formed separately parameter 
Both LW flux and albedo must be present for a given target area 
for the daily net radiation to be calculated, however if only the



or the LW flux is observed on a particular day it alonealbedo 
will be present. Thus, for data poor months the net radiation 
for many target areas may have been calculated for only a few 

days. But albedo and/or LW flux can be present on several 
additional days.



3.3.3 	 Calibration-Induced Discontinuity In WFOV Descending Node


LW Flux



The application of the Channel 13 Calibration Adjustment Table 
(CHI3CAT) forces agreement between daytime WFOV and NFOV LW 
fluxes. calibration slopes and offsets are computed for solar 

angles (SZA) rgnging from -1000 to +1000 degrees. Forzenith 
+100 , the calibration coefficients for SZA = SZA greater than 

° 	 are 	used. For 
 SZA less than -1000, the calibration
+100	
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° coefficients for SZA = -100 are used. However, at the point 
where the contribution due to Channel 13 vanishes (FOV completely 
dark), there is a discontinuity (See Figure 3-1) in WFOV LW 
fluxes. This is due to the fact that calibration corrections are


applied only to Channel 13 and do not correct for inherent 
differences between the Channel 13 and Channel 12 sensors.



3.3.4 NFOV Albedo Computation



Several potential problems exist in the computation of NFOV 
albedo. The directional reflectance models used in production of


the MATRIX data set were a composite of previously derived 
models. It is indicated in the ERB Working Group Meeting #59 
report (September 24, 1982; Sastri Vemury, Research and Data 
Systems) that when models derived from the Nimbus-7 data are 
used, there are significant differences in the resulting NFOV 
albedos. The scene selection algorithm employed in MATRIX to 
select the angular model to be used for a specific surface type 
has been questioned (see Reference 6 for a description of the 
scene selection algorithm). Scene selection appears to be very 
sensitive to a threshold radiance value employed in the 
algorithm. Cloud models seem to be selected more often than is 
appropriate at high satellite view angles. Statistical biases 
appear to be induced due to higher sampling rates at large 
satellite view angle. These problems are discussed in the ERB 
Working Group Meeting #56 report (September 3, 1982; Sastri 
Vemury, Research and Data Systems). A final problem which should


be mentioned is there are often large NFOV albedos near the 
terminator. These problems occur when-the instrument picks up a 
spuriously large input signal in a region where the insolation is 
very low. The problems described here were under study at the 
time of this writing. Future developments will be covered in an 
update to this document. 

3.3.5 WFOV/NFOV Parameters Comparison
 


As part of the analysis of the MATRIX data set, the daily


latitude band averages of various ERB parameters were studied. 
The basic assumption was that day-to-day changes in these


parameters should be small. Also, any significant changes in the


WFOV parameters should be accompanied by similar changes in the 
NFOV parameters. Many exceptions to these criteria were noted.


Fluctuations in the populations of the latitude bands from


day-to-day were found to be the source of the exceptions. These


fluctuations are due to missing orbits or missing segments of 
orbits. This can be due to:



(1) Data Gaps



(2) Spacecraft Operational Mode



(3) MATRIX Data Rejection



The fluctuations in population result in day-to-day fluctuations


in the latitude band averages of the daily MATRIX parameters.


This casts doubt on the usefulness of daily latitude band
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averages in scientific investigations. Monthly latitude band 
averages are not vulnerable to this problem. Also, individual 
target area averages are not affected. If a target area is 
covered results usually seem reliable. However, many gaps in 
daily spacial coverage make daily global maps unreliable.



The effect of the fluctuations discussed above is that under some


conditions, the target areas contributing to a latitude zonal 
average may not be representative of that particular zone. On a


target area basis, however, the data is still reliable.



3.3.6 Channel 13 Degradation



A calibration adjustment was applied to the Channel 13 
irradiances before these were employed in the scientific 
calculations. A major goal of this adjustment was to correct for 
long-term degradation of the Channel 13 filter domes. However, 
in spite of this calibration adjustment there is a residual 
degradation which becomes apparent when the plot of monthly 
global averaged WFOV albedo for Year-l is examined. A general 
downward trend can be observed (see Appendix E). An estimate of 
the residual degradation can be obtained by comparing the


December, 1978 and December, 1979 globally averaged WFOV albedo.



December, 1978 - 31.9



December, 1979 - 31.3



The residual degradation over Year-l (after calibration


adjustment) was approximately 1.9%.



3.3.7 Earth Radius Error
 


This error existed for the first 18 months and was corrected 
after April 1980.



In the computation of maximum reflected energy used in computing


WFOV albedo, the Earth radius was set to 6171 km instead of the 
correct value of 6371 km. The error induced in the maximum


reflected energy is less than one percent except near the


terminator. Near the terminator, the error is about one percent


in the maximum reflected energy, but the reflected energy is so 
small that the albedo is not affected.



3.3.8 Negative Albedos
 


Due to data anomalies not well understood, a small number of 
target areas had negative values for daily averaged NFOV albedo. 
This occurred only five times in Year-l. Screening limits on 
NFOV SW radiance allow -10,000 to 350 as valid data. 
Occasionally a large negative noise spike will be allowed into 
the computation. These values represent random errors in the 
monthly averaged albedo parameters. Possible causes are noise in 
the instrument and poor data quality that was not properly 
flagged on the MAT. 
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3.3.9 Sunblip-Induced Problems



The MATRIX program rejects all WFOV irradiance data taken when 
the sun is in the instrument field of view (FOV). This sunblip
rejection causes two types of problems in the MATRIX data 
products. The first type of problem consists of statistical 
biases in the MATRIX space and time averages. The second type of 
problem consists of errors introduced into the scientific 
parameters due to the way MATRIX algorithms handle the sunblip. 
These problems are briefly discussed below.



Statistical biases in the MATRIX averages are a direct result of


poor sampling of the ERB world grid target areas due to sunblip. 
Since sunblip rejection is keyed to the solar zenith angle (see 
Reference 4 for details on sunblip rejection), the sunblip

rejection zone moves slightly each day, following the solar 
declination. We have a picture like the following:



DATA ACCEPTED



THIS DATA REJECTED


TARGET AREA: 
 BECAUSE OF SUNBLIP



Even though the sunblip rejection heavily impacts the target 
area, a small amount of data is still accepted along the northern


edge of the target area. A bias is introduced into the spatial 
average here for two reasons. First, the irradiance data


accepted is binned and averaged as if it fell at the center of 
the target area when, in reality, it is more characteristic of 
the target area immediately to the north. Second, the sparse
sampling in this target area leads to a larger variance about the 
target area mean irradiance. The motion of the sunblip rejection 
zone in time also introduces biases in monthly averages . The 
reason for this is that some target areas are sampled only during 
days at the beginning of a month then fall in the sunblip
extinction zone for the remaining days of the month. In this 
case, the monthly average for the indicated target area will be 
representative only of the first of the month and not truly 
representative of the month. Similarly, biases may be introduced

when target areas are sampled only at the end of the month due to

motion (in time) of the sunblip rejection band.


The second type of sunblip-induced problem results from the 
MATRIX algorithm used to compute WFOV Total LW flux. The MATRIX 
algorithm computes an average of the ascending and descending LW 
fluxes to provide this parameter. However, if one of these is 
not available due to sunblip rejection, the other is the value 
assigned to the Total LW flux. In the sunblip zone, it is


typically the DN value which is unavailable. The algorithm for 
Total LW flux is:



= AN + DNLW(Total) 
 
2 

3-19





where AN and DN are the ascending and descending LW fluxes. If


sunblip rejection removes the DN LW flux from the target area 
being considered, the algorithm is:



LW(Total) = AN



Consider the following. Let



DN = AN - A 

where is the difference between AN and DN LW flux. If.we


substitute in the previous equation,



A 
LW(Total) AN - 

2 

in the sunblip zone the algorithm only provides a value of AN for 
LW Total flux. This is equivalent to setting A to zero. This 
causes monthly averaged LW Total flux in the sunblip zone to be 
overestimated by A/2. This same error propagates to the monthly 
averaged Net Radiation. In the sunblip zones, the monthly


averaged Net Radiation is underestimated by A/2. The problem of 
sunblip bias in the MATRIX data set is currently under study by 
the ERB Processing Team and additional details will be reported


in later volumes of this document.
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SECTION 4. SUMMARY OF ITEMS CHECKED BY THE MATRIX


SCIENCE QC PROGRAM



A brief description of the items checked by the MATRIX SQC


program are presented here.



4.1 TAPE FORMATTING AND READABILITY CHECKS



4.1.1 Logical and Physical Record Checks



Logical and physical records are checked to assure that they have


proper record lengths and legal record IDs, and that their record


numbers advance properly.
 


4.1.2 Data Presence Checking



The MATRIX tape data files are checked to assure that all files 
are present and in correct sequence. The cyclic and monthly

files are checked to assure that the World Maps are present and 
in correct sequence.



4.1.3 Trailing Documentation File (TDF) Checks



The TDF is dumped to give a record of the tapes used in


production of the MATRIX tape.



4.2 LIMIT CHECKS



The MATRIX parameters are checked for data values exceeding
 

specified tolerance limits. Counts are maintained on a daily and


monthly basis of target area values which violate these limits.


An additional set of tolerance limits are used to test for


out-of-tolerance counts falling within 10% of the normal upper


and lower bounds.



4.3 CONSISTENCY CHECKS



Consistency checks are made to assure that interrelated MATRIX


parameters are internally consistent. Examples of this internal


consitency are as follows: Whenever the LW population parameter

is non-zero, there must be a corresponding LW flux measurement


for the indicated target area; whenever albedo is computed for a


target area, there should be a corresponding net radiation for


the given target area.



4-1





4.4 REASONABLENESS CHECKS



4.4.1 Reasonableness Checks on Albedo and Net Radiation



Several criteria were established to assure that albedo and net 
radiation exhibit the proper geographic behavior. Albedo


parameters should have values less than 35% in the tropics and 
should have values greater than 35% in polar regions. Net


radiation parameters should have positive values in the tropics 
and should have negative values in the polar regions.



4.4.2 Latitude Band Averages



Latitude band averages were computed for all MATRIX parameters
employing the 4.5-degree ERB latitude zones. This provides a 
quick check to assure that the MATRIX parameters show appropriate


behavior across latitude.



4.4.3 Regional Averages



Six geographical regions consisting of four target areas each 
were selected to test the monthly averaged MATRIX parameters to


assure that they showed the proper time (seasonal) behavior for 
their geographical locations. 
Central Pacific, South Pacific, 
Continental US. 

These areas included: 
North Pole, South Pole, 

Sahara, 
and the 

4.4.4 Global Averages 

Global averages were computed for all of the MATRIX parameters.
These results give a quick indication of whether the MATRIX 
parameters show the proper seasonal behavior (across the year). 
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SECTION 5. SCIENCE QC DATA ANALYSIS REPORT



5.1 FORMAT CHECKS



No problems in tape format were found. However, two notes to the


user are in order here. First, the tape file format changes from


tape to tape. This is due to the requirement that cyclic files


be included on the monthly tape for the month in which the cycle

started. A further complication is that the number of files may


be different for each monthly tape due to a variable number of


days and/or cycles in the months. Second, users may find


physical records missing on the tapes received from the archives.


Occasionally the copying process, which produces user tape copies


for shipping, will drop physical records. When a user encounters


this problem, he should request a new tape from the archive.



5.2 LIMIT CHECKS



5.2.1 Limit Checking on Albedo Parameters



Results of limit checking on the MATRIX albedo parameters
 

indicate that a number of target areas have albedos greater than


100% (and also greater than 110%). As discussed in Subsection 
1.3.3, these high albedos occur in the region near the 
terminator. WOV and NFOV albedos seem to show some correlation 
(in time) in this behavior. That is, in time periods where the 
NFOV albedo has large values, there are also large values of WFOV


albedo.



Another significant result from albedo limit checking is the


discovery of negative values for daily averaged NFOV albedo. The


daily averaged NFOV albedo was negative in the following target


areas:



DAY TA NUMBER



350 916 
21 1043 
21 1123 

261 1227 

In each case, the data population for the target area was 2 or


less. This would indicate that the problem is due to a


combination of poor sampling and possible instrument noise.


Negative short wave (reflected) radiances are not screened from


NFOV MATRIX processing (see Reference 4).



5-1





5.2.2 Limit Checking on Net Radiation Parameters



On a daily basis, there are target area values of net radiation



falling below the lower limit (-220 Watts/meter2). However, on


the monthly averages, there are no values below this limit. When


maps of net radiation are generated, no values less than -200



Watts/meter 2 are contoured.



At the upper limit, there are so many values of net radiation


2



which exceed 150 Watts/meter that the limit of 165



2
Watts/meter appears to be a better indication of the upper


bound for net radiation (on a target area basis).



5.2.3 Limit Checking on Population Parameters



Two important results were obtained from the analysis of limit


checking of the MATRIX population parameters. First, by counting

(on a daily basis) the number of target areas which were not


sampled, an assessment can be made regarding which days were


impacted by data sampling problems. These results are summarized


in the tables of Appendix A. These tables will give the user an


indication of which days in Year-l may be unusable due to data


sampling problems. The second result concerns the monthly

population parameters. In Table 5-1, results are tabulated for 
the percentage of monthly world grid target areas which had fewer


than 3 samples. This gives the percentage of target areas for


which the monthly averaged MATRIX parameters were computed with


less than 3 days contributing.



One might have 3 days contributing DN data for a given TA. Then


the AN data might be well sampled for 10 days but on one of the 3


days when DN was available, AN is poorly sampled. This accounts
 

for a 0 under P24. It also accounts for the apparent discrepancy


between P25 and P27. Since the DN population for many TA's
 

during this month was 2 or 3, a less of AN data could cause


significant differences between the columns for P25 and P27.



The significance of Table 5-1 is that for Parameter 27, the Total


LW flux Population Counter for NFOV, the months of January and


February stand out. Almost half of the world grid TA's had less


than 3 counts for these months. This is consistent with the LIMS


Compromise impact discussed in Subsections 3.2.2 and 3.3.1.


Monthly averaged LW fluxes and net radiations are probably


invalid over the Northern Hemisphere in these months.



5.3 CONSISTENCY CHECKS



There were no inconsistencies found in the MATRIX parameters.


All parameters were found to be internally consistent.
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TABLE 5-1.



Sparse Sampling in the ERB MATRIX Monthly Population Parameters



SW 	 SW LW LW LW LW

WFOV WFOV NFOV NFOV NFOV NFOV WFOV WFOV


AN DN AN DN AN DN AVG AVG 

PARM 1 FARM 2 PARM17 PARM18 PARM24 PARM25 PARM26 PARM27


NOV 41.50 56.23 3.77 90.05 0.0 0.0 11.06 0.63


DEC 9.42 21.11 3.77 90.63 0.0 0.0 1.79 0.0


JAN 4.83 19.71 3.62 91.79 0.0 0.0 1.40 47.68


FEB 10.82 25.99 1.35 92.71 0.0 37.87 1.35 49.18



MAR 1.79 10.63 0.0 87.39 0.0 46.43 1.16 0.0


APR 4.25 17.58 1.35 89.42 0.0 0.0 1.16 0.0


MAY 5.89 19.03 2.32 87.87 0.0 0.0 1.26 0.0


JUN 4.25 17.87 3.77 91.88 0.0 0.0 1.64 0.0



JUL 3.91 16.23 3.77 88.45 0.0 0.0 1.50 0.0


AUG 3.09 14.64 1.16 85.70 0.0 0.0 1.16 0.0



SEP 4.40 13.43 0.0 85.12 0.0 0.0 1.16 0.0


OCT 5.17 17.78 0.58 85.27 0.0 0.0 1.16 0.0



ERB MATRIX 	 Monthly Population Parameters: Percentage of World Grid


Target Areas with fewer than 3 samples (fewer than 3 days contributing


to monthly 	 parameters).



NOTE: 1) 	 The zerosmeanonly that 3 or more days contributed - not that there was 100% data
 

availability.



2) For many TA's the DN NFOV LW was normally sampled only for about 3 days in each month.



3) The P27 requires both AN and DN data presence.



4) The quantization interval for P25 and P27 is one day.





5.4 REASONABLENESS CHECKS



5.4.1 Reasonableness Checks on Albedo and Net Radiation



A number of exceptions to the reasonableness criteria for albedo


and net radiation were found. These were explained after


comparing the results with the MATRIX film product. Albedos 
greater than 35% were found in the tropics because of the 
seasonal variations in the Inter-Tropical Convergence Zone 
(ITCZ). Albedos less than 35% were seen in the polar regions 
(typically at the summer pole). These same factors account for 
the behavior of the net radiation. In summary, the 
reasonableness criteria were somewhat arbitrary. Exceptions to 
the criteria were found to be explainable in terms of the


expected seasonal meteorological conditions.



5.4.2 Latitude Band Averages
 


As discussed in Subsection 3.3.4, day-to-day changes in daily 
latitude band averages of the principal MATRIX scientific


parameters were studied. It was pointed out in that section that 
the daily latitude band averages are subject to unreasonable 
fluctuations caused by sampling problems within the bands. For 
this reason, the daily latitude band averages are probably not 
suitable for use in scientific investigations. This caveat is 
primarily intended to cover their use in quantitative studies 
since their behavior is qualitatively correct.



The monthly latitude band averages are not vulnerable to sampling


problems. An appropriate method of viewing the monthly latitude


band averages is use of time-latitude contour plots. These plots


are presented in Appendix B for the principal MATRIX scientific 
parameters.



These monthly results exhibit the types of seasonal behavior that


one might expect given the physical driving forces causing the 
observed variations. These plots are discussed in greater detail


in the ERB Working Group Meeting (WGM) #35 report, RDS, March 26,


1982.



5.4.3 Regional Averages



Regional averages of the principal MATRIX parameters were


computed on a monthly basis for six small regions (each


consisting of four target areas). Averages were computed by


averaging the target area values. Time plots of these results 
are presented in Appendix C. Some evidence of statistical


fluctuations can be observed in these results. The plots show 
that the MATRIX data follows the appropriate behavior at the 
target area level. A possible approach which would improve the 
wide/narrow intercomparison in these results involves convolution


of the narrow or deconvolution of the wide in order that the two


results have similar resolution. The plots do indicate that the


wide and the narrow results show the correct qualitative behavior


across the year.
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5.4.4 Global Averages 

Global averages of the MATRIX parameters were computed. These 
are particularly well suited for studying the behavior of the 
parameters with time. The daily global averages of the principal


MATRIX parameters were plotted across the year. These are


presented in Appendix D. Several observations can be made from 
these plots. The scatter of the points gives an indication of 
the statistical variations in these parameters on a daily basis. 
Flyer points off the main curve indicate days impacted by data 
sampling problems. In general, these curves show excellent 
agreement with the monthly global averages. The correct seasonal 
behavior is also observed.



On a monthly basis, global and hemispherical averages were 
computed for the principal MATRIX parameters. These are 
presented in Appendix E. These curves also demonstrate the 
seasonal trends expected. Several observations can be made from 
these plots. First, the NFOV LW flux and NFOV net radiation 
appear to be unreliable in January and February (due to the LIMS 
Compromise). Biases can be seen between the wide and narrow of 
4-5 Watts for LW flux, 2-3 percent for albedo, and 12-14 Watts 
for net radiation. Seasonal and geographical differences are 
highlighted in the plots of the hemispherical averages. These 
plots are discussed in greater detail in Section 2. 

5-5





SECTION 6. CONCLUSIONS



The contour plots and wide/narrow plots presented in the


appendices indicate close agreement between the wide and narrow


sensors for the MATRIX parameters. Differences in calibration 
and in resolution probably contribute to the discrepancy between 
the wide and narrow results. As pointed out earlier in this 
document, the scientific algorithms are still under study and may 
also contribute to the observed wide/narrow differences. In the 
ERB WGM #35 report (RDS; March 26, 1982), it is pointed out that 
there is close qualitative agreement not only between wide and 
narrow, but also between the ERB results and those from a sensor

aboard another spacecraft.


As a final note, analysis of the MATRIX film product indicates 
that the wide and narrow results also show close agreement on a 
geographical (regional) basis. (Several notes on the MATRIX film


product appear in Appendix F).



The scientific algorithms were under study at the time of this 
writing. New developments in that area will be reported to users


in updates to Volume I and Volume II of this document.



To summarize briefly, the results of the QC analysis presented 
here indicate that the MATRIX data is scientifically reasonable 
and valid for scientific use (with exceptions as noted in this 
report). Useful as checks on each other, the wide and narrow 
results show close qualitative agreement. Efforts are in 
progress which may produce significant improvement in the MATRIX 
data set.
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APPENDIX A.



Data Sampling for Year-i



The daily population limit checking results were analysed to 
produce tables for Year-i which give an indication of which days
might have been impacted by data sampling problems. On a daily
basis, the count of target areas having zero -samples was used to 
make this assessment. By looking at enough data to determine 
what normal ranges of this count should be for the various wide 
and narrow population parameters, a determination of problem days


can be made. As indicated on the next page, the sampling

problems indicated in this appendix are all due to the spacecraft

operational mode.
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NOTES: 

Y : Data was available for MATRIX processing 

NOTE A : Scanner was not operating for part of the day 

NOTE B : Scanner was not operating on Descending Node 
over Northern Hemisphere 

NOTE C : Very sparse scanner data 

NOTE D Scanner was off for the day 

NOTE E Channel 12 was Narrow or Shuttered for part 
of this day 

NOTE F : Channel 12 was Narrow or Shuttered for the day 
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Data Sampling for November, 1978



DATA PRESENT



DAY WFOV NFOV



320 Note E Note A



321 Note E Y



322 Note E Y



324 Y Y



325 Y Y



326 Y Y



328 Y Y



329 Y Y



330 Y y



332 Y Y



333 Y Y



334 Y Note A
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DAY 


336 

337 

338 

340 

341 

342 

344 

345 

346 

348 

349 

350 

352 

353 

354 

356 

357 

358 

360 

361 

362 

364 

365



DATA SAMPLING FOR DECEMBER, 1978



DATA PRESENT


WFOV 
 

Y 
 
Y 
 
Y 
Y 
Y 
Y 
Y 

y 
Y 

Y 

y 
Y 
 
Y 

y 
Y 


NOTE F 
 
NOTE F 
 
NOTE F 
 

Y 
 
Y 
Y 
 
Y 
 

NFOV



Y.


y


Y


Y 
Y 
Y 

NOTE D


y 
y 

NOTE C


y 
Y



NOTE D


Y 
y 

NOTE C


Y


Y



NOTE C


Y


Y



NOTE C
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DATA SAMPLING FOR JANUARY, 1979 

DATA PRESENT 

DAY WFOV NFOV 

1 Y Y 
3 Y NOTE C 
4 Y NOTE B 

5 Y NOTE B 

7 Y NOTE C 
8 Y NOTE B 
9 Y NOTE B 

ii Y NOTE C 

12 Y Y 
13 Y NOTE B 
15 Y NOTE D 
16 Y NOTE B 
17 Y NOTE B 
19 Y NOTE D 
20 Y NOTE B 
21 Y NOTE B 
23 Y NOTE D 
25 Y NOTE B 
27 Y NOTE B 
29 Y NOTE B 
31 Y NOTE B 
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DATA SAMPLING FOR FEBRUARY, 1979 

DATA PRESENT 
DAY WFOV NFOV 

33 Y NOTE B 
35 Y NOTE D 
37 Y NOTE C 
39 Y NOTE D 
40 Y NOTE B 
41 Y NOTE B 
43 Y NOTE C 
44 Y NOTE A 
45 Y NOTE B 
47 Y NOTE D 
48 Y Y 
49 Y NOTE A 
51 Y NOTE D 
52 Y NOTE B 
53 Y NOTE B 
55 Y NOTE D 
57 Y NOTE D 
59 Y NOTE C 
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DATA SAMPLING FOR MARCH, 1979 

DATA PRESENT 

DAY WFOV NFOV 

60 Y NOTE A 
61 Y NOTE B 
63 Y NOTE D 
64 Y NOTE B 
65 Y NOTE B 
67 Y NOTE D 
68 y NOTE B 
69 Y Y 
71 Y NOTE C 
72 y y 
73 Y Y 
75 Y NOTE C 
76 y Y 
77 Y y 
79 Y NOTE C 
80 Y Y 
81 y Y 
83 Y NOTE D 
84 Y Y 
85 Y Y 
87 Y NOTE D 
88 Y Y 
89 Y Y 
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DATA SAMPLING FOR APRIL, 1979



DAY WFOV 
 

91 Y 
 
93 Y 
 
95 Y 
 
97 Y 
 
99 Y 
 

101 Y 
103 Y 
 
104 y 
105 y 
106 y 
107 y 
108 Y 
109 y 
ill Y 
 
112 y 
113 y 
115 y 
 
116 y 
117 y 
118 y 
119 Y 

DATA PRESENT


NFOV



NOTE D


NOTE D


NOTE D


NOTE D


NOTE D


NOTE D


NOTE C



y 
Y


y 
y 
y 
y 

NOTE C


y 
y 

NOTE C


y 
Y 
y 
Y 
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DATA SAMPLING FOR MAY, 1979



DATA PRESENT



WFOV NFOV
DAY 


y NOTE D
121 
 
Y Y
123 

Y Y
124 

Y Y
125 

y NOTE D
127 

128 Y Y 
y NOTE D
129 
 
Y Y
131 

Y Y
133 

Y y134 
 
Y Y
135 

Y Y
137 

Y Y
139 


Y
140 Y 
 
Y Y
141 


y143 y 
 
Y Y
144 


Y
145 Y 
 
Y Y
147 
 
Y Y
148 
 
Y Y
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DATA SAMPLING FOR JUNE, 1979



DATA PRESENT


DAY WFOV NFOV



152 Y Y 
153 Y Y 
155 Y Y 
156 Y Y 
157 Y Y 
159 Y Y 
160 Y Y 
161 Y Y 
163 Y Y 
164 Y Y 
165 Y Y 
167 Y Y 
168 Y Y 
169 Y Y 
171 Y Y 
172 Y Y 
173 Y Y 
175 Y Y 
176 Y Y 
177 Y Y 
179 Y NOTE A 
180 Y Y 
181 Y Y 
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DATA SAMPLING FOR JULY, 1979



DATA PRESENT


DAY WFOV NFOV



183 Y Y 
184 Y Y 
185 Y Y 
187 Y Y 
188 Y Y


189 Y Y


191 Y Y


192 Y Y


193 Y Y


195 Y Y


196 Y Y


197 Y Y


199 NOTE E Y


200 Y Y


201 Y y


203 Y Y


204 Y Y


205 Y Y


207 Y Y


208 Y Y


209 Y y


211 Y Y


212 Y Y
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DATA SAMPLING FOR AUGUST, 1979



DAY WFOV NFOV



213 Y Y 
215 Y y 
216 Y y 
217 Y Y 
219 Y y 
220 Y Y 
221 Y Y 
223 Y Y 
224 y Y 
225 Y Y 
227 y Y 
228 y Y 
229 Y Y 
231 Y Y 
232 y Y 
233 Y Y 
235 Y Y 
236 Y Y 
237 Y Y 
239 y Y 
240 Y Y 
241 Y Y 
243 Y Y 

A-12





DATA SAMPLING FOR SEPTEMBER, 1979



DATA PRESENT


DAY WFOV NFOV



244 y y 
245 y y 
247 y y 
248 y y 
249' y y 
251 y y 
252 y y 
253 y y 
255 y y 
256 y y 
257 y y 
259 y y 
260 y y 
261 y y 
263 y y 
264 y y 
265 y y 
267 y y 
268 y y 
269 y y 
271 y y 
272 Y NOTE C 
273 y y 

A-13





DATA SAMPLING FOR OCTOBER, 1979



DATA PRESENT


DAY WFOV NFOV



275 Y y 
276 Y NOTE C 

277 Y y 
279 y y 
280 Y y 
281 y y 
283 y y 
284 y y 
285 y y 
287 y Y 
288 Y y 
289 y y 
291 NOTE F Y 
292 NOTE F Y 
293 NOTE F Y 
295 Y Y 
296 y y 
297 y y 
299 y y 
300 Y NOTE C 
301 Y Y 
303 y y 
304 Y NOTE C 

A-14





APPENDIX B.



Time-Latitude Contour Plots



Time-latitude contour plots are presented for the principal


MATRIX scientific parameters:



AN LW Flux - WFOV


DN LW Flux - WFOV


Total LW Flux - WFOV


AN LW Flux - NFOV


DN LW Flux - NFOV


Total LW Flux - NFOV


Albedo - WFOV


Albedo - NFOV


Net Radiation - WFOV


Net Radiation - NFOV



These plots cover the time period (along the X-axis) from


November 16, 1978 to October 31, 1979. Units of flux parameters



are Watts/meter2 . Units of albedo parameters are percent


(albedo units).
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APPENDIX C.



Regional Average Plots



Plots of regional averages of MATRIX parameters are presented for



six geographical regions:



1) Sahara



2) Central Pacific



3) South Pacific



4) South Pole



5) North Pole



6) Continental US



Each region consists of four ERB world grid target areas.


Straight averages of the parameters values from the four TA's


were computed for use here. The time period covered is November


16, 1978 to October 31, 1979. Some fluctuations appear to be due


to statistical fluctuations (sampling) on the TA level. Albedo


plots show gaps where the terminator crosses the indicated


region. Large albedo values are also indicated in some cases


near the terminator (see Subsection 3.2.4).



An interesting note is the behavior of the LW terrestrial flux


(average of AN and DN) at the South Pole. Over most regions, the 
narrow instrument sees a "warmer" Earth than does the wide. This 
situation is reversed at the South Pole. This reversal is 
probably due to the difference in resolution of the two 
instruments. There is a significant amount of water in the Field 
of View (FOV) of the wide sensor. The narrow sensor sees only
the indicated target areas, and has no water in its FOV. This 
plausibility argument can also be applied to explain the seasonal 
changes in the wide/narrow intercomparison at the South Pole. 
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APPENDIX D.



Daily Global Average Plots



Plots of daily global averages for the principal MATRIX


scientific parameters are presented. The units along the X-axis


are a modified mission day number. Day 0 is November 1, 1978; 
etc. The time period covered by the data is November 16, 1978 to 
October 31, 1979. The scatter in the data is an indication of 
the statistical fluctuations in the daily averages of the MATRIX 
,parameters. Flyer points can be correlated with the known days
which have data sampling problems. The effect of the LIMS 
Compromise is especially noticeable in the NFOV LW flux and net 
radiation parameters.
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APPENDIX E.



Global and Hemispherical Average Plots



Plots of the monthly global and hemispherical averages of the


principal MATRIX scientific parameters for Year-i are presented.


The data covers the period from November 16, 1978 to October 31,


1979.



E-1





ORIGINAL PAGE M


OF POOR QUALITY



-

---

GLOBAL AVERAGES FOR WFOV LW FLUX -

GLOBAL AVERAGES FOR NFOV LW FLUX -

A.N. 

A.N. 

210 

239 

A 
T 
T 

238 

237 

wI 

P 
E 
R 

235 

235 -

U 
A 
R 
E 

231 

E 
T 
E 

233 - RI 

232 -

231 

1978 

DEC JAN FEB MAR 

1979 

APR MAY JUN JUL AUG SEP OCT 

E-2





ORIGINAL PACE ES 

OF POOR QUALrry 

-

---

GLOBAL AVERAGES FOR WFOV LW FLUX - D.N. 

GLOBAL AVERAGES FOR NFOV LW FLUX - D.N. 

235 

234 " 

A 

233 

232 

231 

/ 
/\ 

/\ 

" 
/\ 

/ 
/ 

/ 

T 
5 

230 -

P 
E 
R 

229 -

228 -

/. 

5 227 - -------

U 
A 226 

E 225 

M 
E 
-f 

E 
R 

221 

223 

222 

221 

220 

DEC 

ttI 

JAN FEB 

I 
MAR 

I 
APR 

I 
MAY 

I 
JUN 

I 
JUL AUG SEP OCT 

1978 1979 

E-3





ORIGINAL PAGE U9 
OF POOR QUALITY 

-

----

GLOBAL AVERAGES FOR WFOV LW FLUX(AVERAGE OF AN E DN) 

GLOBAL AVERAGES FOR NFOV LW FLUX(AVERAGE OF AN C DN) 

238 

237 
/ 

w 
A 
7 
T 
5 

p 
E-
R 

S 
0 
U 
A 

236 

235 

234 

233 

232 

231 

S 

- -

/
/ 

/ 

/' 

// 

/\ 
/\ 

\ 

E 

M 

23D 

F " 

E 
T 
E 
R 

229 

228 

227 

22622B 

ov 
22 

I 
DEC 

I 
JAN 

I 
FEB 

I 
MAR 

I 
APR 

IIII 
MAY JUN JUL AUG SEP OC 

1978 1979 

E-4





ORIGI A AE M3 
OF POOR QUALIy 

HEMISPHERICAL AVERAGES FOR L.W. FLUX - A.N. 

- OBSERVATION FROI WIDE FIELD OF VIEW 

OBSERVATION FROM NARROW FIELD OF VIEW 

250 

246 

216 

A 

T 
S 
R 242 -238 - /H 
p 240 
E 
U 236 i/, 

S 

A 
R 
E 

E 
234 
232  "... / 

T 

ER 230  / 

- NH 

221 
NOV 

1978 

DEC JAN FEB MAR 

1979 

APR MAY JUN JUL AUG SEP OC 

E-5




ORIGINAL PAGE ff 
OF POOR QUALITY 

IMISPHtERICAL AVERAGES FOR L.W. FLUX - D.N. 

- - OBSERVATION FROM WIDE FIELD OF VIEW 

.....--OBSERVATION FROM NARROW FIELD OF VIEW 

240 

A 
T 

p
E 
R 

Q 

u 
A 

238 

236 

234 -
S 

232 

230 -

-
228 

226 

224 

"--

SH 

N 

,b 

-H 

N 

/ 

/ 

/ 

I 

/
I 

/ 

//", 

- -

4' 

\' 

E 

E 
T 

R N 

214 

212 

21or I I I I I I I I I I 

NOV 

1978 

DEC JAN FEB MAR 

1979 

APR MAY JUN AJL AUG SEP OCT 

E
6 




APPENDIX F.



Notes on the MATRIX Film Products



Several general comments can be made concerning the MATRIX film 
products. Short discussions of these are given in the following


sections.



F.1 LIMS Compromise



The LIMS Compromise shows up dramatically in the film products. 
The population density diagrams indicate the full impact of this


problem. During the months of January and February (and early 
March), the Northern Hemisphere polar stereographic projections

show zero or sparse sampling for the NFOV LW data populations. 
The problem shows up very well on the mercator projection also.



Missing data is indicated in the contour products by broken 
contour lines. In the case of the LIMS Compromise, there are no 
contours in the region where the Compromise was in effect. 

F.2 Sparse Data on WFOV Net Radiation Cyclic Contours



The 6-day cyclic averages are meant to provide results for net 
radiation at periods corresponding to complete global coverage by 
the spacecraft. However, the ON-OFF duty cycle of the ERB 
instrument causes lack of complete global coverage during the 
6-day period. on the film products this shows up as data gaps on 
the WFOV cyclic contours. That is, there are broken contour 
lines on the WFOV cyclic net radiation contours. These are 
aesthetically unappealing but should not cause any sampling 
problems in the cyclic averages.



F.3 Normalized Dispersion of WFOV Albedo



The contour plots for the normalized dispersion of WFOV albedo 
show very dense contours. The plots appear to have a number of 
regions where there are actually spikes which produce the dense 
contours. This parameter measures the fluctuations of the daily


averaged albedo for a target area about the mean of the daily 
albedos for that target area. The dense contours indicate that 
there are target areas (or groups of target areas) for which 
large day-to-day fluctuations occur in the values of WFOV albedo.


This is not completely unexpected in view of the previously 
discussed fluctuations in latitude band averages (see Subsection


1.3.3). These dense contours do not indicate that the monthly 
average of WFOV albedo is unreliable.
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APPENDIX F. Notes on the MATRIX Film Products



(Continued)



F.4 Standard Deviation of NFOV Net Radiation



The standard deviation of NFOV net radiation show very dense 
contours. The same discussion applies here that was given in 
Section F.3. 

F.5 Spikes in the WFOV DN LW Flux



Sharp spikes appear in the contour plots of WFOV DN LW flux for 
the months of February and August, 1979. (other spikes may


appear in the contour products in addition to these). The spikes


are indicated by very dense, highly localized, closed contour 
lines at the following locations:
 


February : 00 Longitude, 400 N. Latitude



100 E. Longitude, 400 N. Latitude



August : 200 E. Longitude, 500 N. Latitude



These spikes in LW flux are well correlated with spikes in the 
Normalized Dispersion of WFOV LW flux. An important note to 
users is that contour plots of the statistical parameters should 
be used to check for spikes or other anomalous behavior in the 
MATRIX parameter contour plots. In this manner, users can assure


that scientific studies involving specific geographic regions are


not biased by instrument noise or statistical breakdowns. The 
statistical parameter contour plots are recommended as a valuable


cross-check on the quality of the MATRIX data.
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