27,357 research outputs found

    Dynamic and Stagnating Plasma Flow Leading to Magnetic Flux Tube Collimation

    Get PDF
    Highly collimated, plasma-filled magnetic flux tubes are frequently observed on galactic, stellar and laboratory scales. We propose that a single, universal magnetohydrodynamic pumping process explains why such collimated, plasma-filled magnetic flux tubes are ubiquitous. Experimental evidence from carefully diagnosed laboratory simulations of astrophysical jets confirms this assertion and is reported here. The magnetohydrodynamic process pumps plasma into a magnetic flux tube and the stagnation of the resulting flow causes this flux tube to become collimated.Comment: to be published in PRL; color figures on electronic versio

    Playing with nonuniform grids

    Get PDF
    Numerical experiments with discretization methods on nonuniform grids are presented for the convection-diffusion equation. These show that the accuracy of the discrete solution is not very well predicted by the local truncation error. The diagonal entries in the discrete coefficient matrix give a better clue: the convective term should not reduce the diagonal. Also, iterative solution of the discrete set of equations is discussed. The same criterion appears to be favourable.

    The Cool ISM in Elliptical Galaxies. II. Gas Content in the Volume - Limited Sample and Results from the Combined Elliptical and Lenticular Surveys

    Full text link
    We report new observations of atomic and molecular gas in a volume limited sample of elliptical galaxies. Combining the elliptical sample with an earlier and similar lenticular one, we show that cool gas detection rates are very similar among low luminosity E and SO galaxies but are much higher among luminous S0s. Using the combined sample we revisit the correlation between cool gas mass and blue luminosity which emerged from our lenticular survey, finding strong support for previous claims that the molecular gas in ellipticals and lenticulars has different origins. Unexpectedly, however, and contrary to earlier claims, the same is not true for atomic gas. We speculate that both the AGN feedback and merger paradigms might offer explanations for differences in detection rates, and might also point towards an understanding of why the two gas phases could follow different evolutionary paths in Es and S0s. Finally we present a new and puzzling discovery concerning the global mix of atomic and molecular gas in early type galaxies. Atomic gas comprises a greater fraction of the cool ISM in more gas rich galaxies, a trend which can be plausibly explained. The puzzle is that galaxies tend to cluster around molecular-to-atomic gas mass ratios near either 0.05 or 0.5.Comment: 37 pages, including 4 tables and 12 figures. Accepted for publication in the Astrophysical Journa

    Density functional study of the actinide nitrides

    Full text link
    The full potential all electron linearized augmented plane wave plus local orbitals (FP-LAPW + lo) method, as implemented in the suite of software WIEN2K, has been used to systematically investigate the structural, electronic, and magnetic properties of the actinide compounds AnN (An = Ac, Th, Pa, U, Np, Pu, Am). The theoretical formalism used is the generalized gradient approximation to density functional theory (GGA-DFT) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. Each compound has been studied at six levels of theory: non-magnetic (NM), non-magnetic with spin-orbit coupling (NM+SOC), ferromagnetic (FM), ferromagnetic with spin-orbit coupling (FM+SOC), anti-ferromagnetic (AFM), and anti-ferromagnetic with spin-orbit coupling (AFM+SOC). The structural parameters, bulk moduli, densities of states, and charge distributions have been computed and compared to available experimental data and other theoretical calculations published in the literature. The total energy calculations indicate that the lowest energy structures of AcN, ThN, and PaN are degenerate at the NM+SOC, FM+SOC, and AFM+SOC levels of theory with vanishing total magnetic moments in the FM+SOC and AFM+SOC cases, making the ground states essentially non-magnetic with spin-orbit interaction. The ground states of UN, NpN, PuN, and AmN are found to be FM+SOC at the level of theory used in the present computations. The nature of the interactions between the actinide metals and nitrogen atom, and the implications on 5f electron delocalization and localization are discussed in detail.Comment: 5 tables, 12 figure

    Properties of solar polar coronal plumes constrained by Ultraviolet Coronagraph Spectrometer data

    Full text link
    We investigate the plasma dynamics (outflow speed and turbulence) inside polar plumes. We compare line profiles (mainly of \ion{O}{6}) observed by the UVCS instrument on SOHO at the minimum of solar cycle 22-23 with model calculations. We consider Maxwellian velocity distributions with different widths in plume and inter-plume regions. Electron densities are assumed to be enhanced in plumes and to approach inter-plume values with increasing height. Different combinations of the outflow and turbulence velocity in the plume regions are considered. We compute line profiles and total intensities of the \ion{H}{1} Lyα\alpha and the \ion{O}{6} doublets. The observed profile shapes and intensities are reproduced best by a small solar wind speed at low altitudes in plumes that increases with height to reach ambient inter-plume values above roughly 3-4 R_\sun combined with a similar variation of the width of the velocity distribution of the scattering atoms/ions. We also find that plumes very close to the pole give narrow profiles at heights above 2.5 R_\sun, which are not observed. This suggests a tendency for plumes to be located away from the pole. We find that the inclusion of plumes in the model computations provides an improved correspondence with the observations and confirms previous results showing that published UVCS observations in polar coronal holes can be roughly reproduced without the need for large temperature anisotropy. The latitude distributions of plumes and magnetic flux distributions are studied by analyzing data from different instruments on SOHO and with SOLIS.Comment: 11 figure

    Derivatives and inequalities for order parameters in the Ising spin glass

    Full text link
    Identities and inequalities are proved for the order parameters, correlation functions and their derivatives of the Ising spin glass. The results serve as additional evidence that the ferromagnetic phase is composed of two regions, one with strong ferromagnetic ordering and the other with the effects of disorder dominant. The Nishimori line marks a crossover between these two regions.Comment: 10 pages; 3 figures; new inequalities added, title slightly change

    The Unified Model & Evolution of Active Galaxies: Implications from a Spectropolarimetric Study

    Get PDF
    We extend the analysis presented in Tran (2001) of a spectropolarimetric survey of the CfA and 12micron samples of Seyfert 2 galaxies (S2s). We confirm that S2s with hidden broad line regions (HBLRs) tend to have hotter circumnuclear dust temperatures, show mid-IR spectra more characteristic of S1 galaxies, and are intrinsically more luminous than non-HBLR S2s. The level of obscuration and circumnuclear star formation, however, appear to be similar between HBLR and non-HBLR S2 galaxies, based on an examination of various observational indicators. HBLR S2s, on average, share many similar large-scale, presumably isotropic, characteristics with Seyfert 1 galaxies (S1s), as would be expected if the unified model is correct, while non-HBLR S2s generally do not. The active nuclear engines of non-HBLR S2s then, appear to be truly weaker than HBLR S2s, which in turn, are fully consistent with being S1s viewed from another direction. There is also evidence that the fraction of detected HBLR increases with radio power of the AGN. Thus, not all Seyfert 2 galaxies may be intrinsically similar in nature, and we speculate that evolutionary processes may be at work.Comment: 15 pages with embedded figs, ApJ in press, vol. 583, 2003 Feb. 1. v2: minor corrections to text, some typos removed; updated reference list: some added, some remove

    Usability Evaluation of Indicators of Energy-Related Problems in Commercial Airline Flight Decks

    Get PDF
    A series of pilot-in-the-loop flight simulation studies were conducted at NASA Langley Research Center to evaluate indicators aimed at supporting the flight crews awareness of problems related to energy states. Indicators were evaluated utilizing state-of-the-art flight deck systems such as on commercial air transport aircraft. This paper presents results for four technologies: (1) conventional primary flight display speed cues, (2) an enhanced airspeed control indicator, (3) a synthetic vision baseline that provides a flight path vector, speed error, and an acceleration cue, and (4) an aural airspeed alert that triggers when current airspeed deviates beyond a specified threshold from the selected airspeed. Full-mission high-fidelity flight simulation studies were conducted using commercial airline crews. Crews were paired by airline for common crew resource management procedures and protocols. Scenarios spanned a range of complex conditions while emulating several causal factors reported in recent accidents involving loss of energy state awareness by pilots. Data collection included questionnaires administered at the completion of flight scenarios, aircraft state data, audio/video recordings of flight crew, eye tracking, pilot control inputs, and researcher observations. Questionnaire response data included subjective measures of workload, situation awareness, complexity, usability, and acceptability. This paper reports relevant findings derived from subjective measures as well as quantitative measures

    The Stability of the Replica Symmetric State in Finite Dimensional Spin Glasses

    Full text link
    According to the droplet picture of spin glasses, the low-temperature phase of spin glasses should be replica symmetric. However, analysis of the stability of this state suggested that it was unstable and this instability lends support to the Parisi replica symmetry breaking picture of spin glasses. The finite-size scaling functions in the critical region of spin glasses below T_c in dimensions greater than 6 can be determined and for them the replica symmetric solution is unstable order by order in perturbation theory. Nevertheless the exact solution can be shown to be replica-symmetric. It is suggested that a similar mechanism might apply in the low-temperature phase of spin glasses in less than six dimensions, but that a replica symmetry broken state might exist in more than six dimensions.Comment: 5 pages. Modified to include a paragraph on the relation of this work to that of Newman and Stei
    corecore