46 research outputs found

    New Measurements of Doubly Ionized Iron Group Spectra by High Resolution Fourier Transform and Grating Spectroscopy

    Get PDF
    We report new measurements of doubly ionized iron group element spectra, important in the analysis of B-type (hot) stars whose spectra they dominate. These measurements include Co III and Cr III taken with the Imperial College VUV Fourier transform (FT) spectrometer and measurements of Co III taken with the normal incidence vacuum spectrograph at NIST, below 135 nm. We report new Fe III grating spectra measurements to complement our FT spectra. Work towards transition wavelengths, energy levels and branching ratios (which, combined with lifetimes, produce oscillator strengths) for these ions is underway

    Accurate VUV Laboratory Measurements of Fe III Transitions for Astrophysical Applications

    Get PDF
    We report preliminary measurements of Fe III spectra in the 1150 to 2500 A wavelength interval. Spectra have been recorded with an iron-neon Penning discharge lamp (PDL) between 1600 and 2500 A at Imperial College (IC) using high resolution Fourier (FT) transform spectroscopy. These FT spectrometer measurements were extended beyond 1600 A to 1150 A using high-resolution grating spectroscopy at the National Institute of Standards and Technology (NIST). These recorded spectra represent the first radiometrically calibrated measurements of a doubly-ionized iron-group element spectrum combining the techniques of vacuum ultraviolet FT and grating spectroscopy. The spectral range of the new laboratory measurements corresponds to recent HST/STIS observations of sharp-lined B stars and of Eta Carinae. The new improved atomic data can be applied to abundance studies and diagnostics of astrophysical plasmas

    The FERRUM project: Transition probabilities for forbidden lines in [FeII] and experimental metastable lifetimes

    Full text link
    Accurate transition probabilities for forbidden lines are important diagnostic parameters for low-density astrophysical plasmas. In this paper we present experimental atomic data for forbidden [FeII] transitions that are observed as strong features in astrophysical spectra. Aims: To measure lifetimes for the 3d^6(^3G)4s a ^4G_{11/2} and 3d^6(^3D)4s b ^4D_{1/2} metastable levels in FeII and experimental transition probabilities for the forbidden transitions 3d^7 a ^4F_{7/2,9/2}- 3d^6(^3G)4s a ^4G_{11/2}. Methods: The lifetimes were measured at the ion storage ring facility CRYRING using a laser probing technique. Astrophysical branching fractions were obtained from spectra of Eta Carinae, obtained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. The lifetimes and branching fractions were combined to yield absolute transition probabilities. Results: The lifetimes of the a ^4G_{11/2} and the b ^4D_{1/2} levels have been measured and have the following values, 0.75(10) s and 0.54(3) s respectively. Furthermore, we have determined the transition probabilities for two forbidden transitions of a ^4F_{7/2,9/2}- a ^4G_{11/2} at 4243.97 and 4346.85 A. Both the lifetimes and the transition probabilities are compared to calculated values in the literature.Comment: 5 pages, accepted for publication in A&

    The FERRUM project: laboratory-measured transition probabilities for Cr II

    Full text link
    Aims: We measure transition probabilities for Cr II transitions from the z ^4H_J, z ^2D_J, y ^4F_J, and y ^4G_J levels in the energy range 63000 to 68000 cm^{-1}. Methods: Radiative lifetimes were measured using time-resolved laser-induced fluorescence from a laser-produced plasma. In addition, branching fractions were determined from intensity-calibrated spectra recorded with a UV Fourier transform spectrometer. The branching fractions and radiative lifetimes were combined to yield accurate transition probabilities and oscillator strengths. Results: We present laboratory measured transition probabilities for 145 Cr II lines and radiative lifetimes for 14 Cr II levels. The laboratory-measured transition probabilities are compared to the values from semi-empirical calculations and laboratory measurements in the literature.Comment: 13 pages. Accepted for publication in A&

    Astronomy & Astrophysics The FERRUM project: laboratory-measured transition probabilities for Cr II

    Get PDF
    ABSTRACT Aims. We measure transition probabilities for Cr ii transitions from the z 4 H J , z 2 D J , y 4 F J , and y 4 G J levels in the energy range 63 000 to 68 000 cm −1 . Methods. Radiative lifetimes were measured using time-resolved laser-induced fluorescence from a laser-produced plasma. In addition, branching fractions were determined from intensity-calibrated spectra recorded with a UV Fourier transform spectrometer. The branching fractions and radiative lifetimes were combined to yield accurate transition probabilities and oscillator strengths. Results. We present laboratory measured transition probabilities for 145 Cr ii lines and radiative lifetimes for 14 Cr ii levels. The laboratory-measured transition probabilities are compared to the values from semi-empirical calculations and laboratory measurements in the literature

    Atomic lines in infrared spectra for ultracool dwarfs

    Get PDF
    We provide a set of atomic lines which are suitable for the description of ultracool dwarf spectra from 10000 to 25000 \AA. This atomic linelist was made using both synthetic spectra calculations and existing atlases of infrared spectra of Arcturus and Sunspot umbra. We present plots, which show the comparison of synthetic spectra and observed Arcturus and Sunspot umbral spectra for all atomic lines likely to be observable in high resolution infrared spectra.Comment: 21 pages, 2 tables, 129 figures, figures are available only at http://www.astro.livjm.ac.uk/~hraj/spectralatlas/index.html, accepted to A&

    Explanation of the activity sensitivity of Mn I 5394.7 \AA

    Full text link
    There is a long-standing controversy concerning the reason why the Mn I 5394.7 A line in the solar irradiance spectrum brightens more at larger activity than most other photospheric lines. The claim that this activity sensitivity is caused by spectral interlocking to chromospheric emission in Mg II h & k is disputed. Classical one-dimensional modeling is used for demonstration; modern three-dimensional MHD simulation for verification and analysis. The Mn I 5394.7 A line thanks its unusual sensitivity to solar activity to its hyperfine structure. This overrides the thermal and granular Doppler smearing through which the other, narrower, photospheric lines lose such sensitivity. We take the nearby Fe I 5395.2 A line as example of the latter and analyze the formation of both lines in detail to demonstrate and explain granular Doppler brightening. We show that this affects all narrow lines. Neither the chromosphere nor Mg II h & k play a role, nor is it correct to describe the activity sensitivity of Mn I 5394.7 A through plage models with outward increasing temperature contrast. The Mn I 5394.7 A line represents a proxy diagnostic of strong-field magnetic concentrations in the deep solar photosphere comparable to the G band and the blue wing of H-alpha, but not a better one than these. The Mn I lines are more promising as diagnostic of weak fields in high-resolution Stokes polarimetry.Comment: 12 pages, 8 figures, accepted by A&

    Atomic transition frequencies, isotope shifts, and sensitivity to variation of the fine structure constant for studies of quasar absorption spectra

    Full text link
    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, alpha, could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that alpha varies spatially. That is, in one direction on the sky alpha seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger. To continue this study we need accurate laboratory measurements of atomic transition frequencies. The aim of this paper is to provide a compilation of transitions of importance to the search for alpha variation. They are E1 transitions to the ground state in several different atoms and ions, with wavelengths ranging from around 900 - 6000 A, and require an accuracy of better than 10^{-4} A. We discuss isotope shift measurements that are needed in order to resolve systematic effects in the study. The coefficients of sensitivity to alpha-variation (q) are also presented.Comment: Includes updated version of the "alpha line" lis

    NF90 Binds the Dengue Virus RNA 3′ Terminus and is a Positive Regulator of Dengue Virus Replication

    Get PDF
    Background Viral RNA translation and replication are regulated by sequence and structural elements in the 5′ and 3′ untranslated regions (UTR) and by host cell and/or viral proteins that bind them. Dengue virus has a single-stranded RNA genome with positive polarity, a 5′ m7GpppG cap, and a conserved 3′-terminal stem loop (SL) that is linked to proposed functions in viral RNA transcription and translation. Mechanisms explaining the contributions of host proteins to viral RNA translation and replication are poorly defined, yet understanding host protein-viral RNA interactions may identify new targets for therapeutic intervention. This study was directed at identifying functionally significant host proteins that bind the conserved dengue virus RNA 3′ terminus. Methodology/Principal Findings Proteins eluted from a dengue 3′ SL RNA affinity column at increasing ionic strength included two with double-strand RNA binding motifs (NF90/DRBP76 and DEAH box polypeptide 9/RNA helicase A (RHA)), in addition to NF45, which forms a heterodimer with NF90. Although detectable NF90 and RHA proteins localized to the nucleus of uninfected cells, immunofluorescence revealed cytoplasmic NF90 in dengue virus-infected cells, leading us to hypothesize that NF90 has a functional role(s) in dengue infections. Cells depleted of NF90 were used to quantify viral RNA transcript levels and production of infectious dengue virus. NF90 depletion was accompanied by a 50%-70% decrease in dengue RNA levels and in production of infectious viral progeny. Conclusions/Significance The results indicate that NF90 interacts with the 3′ SL structure of the dengue RNA and is a positive regulator of dengue virus replication. NF90 depletion diminished the production of infectious dengue virus by more than 50%, which may have important significance for identifying therapeutic targets to limit a virus that threatens more than a billion people worldwide.Ruth L. Kirschstein National Research Service Award (NIH-NRSA GM64985)UNCF-Merck Postdoctoral FellowshipNational Institute of Allergy and Infectious Diseases (U.S.)Ellison Medical Foundatio
    corecore