5,806 research outputs found

    On the Detectability of the Hydrogen 3-cm Fine Structure Line from the EoR

    Full text link
    A soft ultraviolet radiation field, 10.2 eV < E <13.6 eV, that permeates neutral intergalactic gas during the Epoch of Reionization (EoR) excites the 2p (directly) and 2s (indirectly) states of atomic hydrogen. Because the 2s state is metastable, the lifetime of atoms in this level is relatively long, which may cause the 2s state to be overpopulated relative to the 2p state. It has recently been proposed that for this reason, neutral intergalactic atomic hydrogen gas may be detected in absorption in its 3-cm fine-structure line (2s_1/2 -> 2p_3/2) against the Cosmic Microwave Background out to very high redshifts. In particular, the optical depth in the fine-structure line through neutral intergalactic gas surrounding bright quasars during the EoR may reach tau~1e-5. The resulting surface brightness temperature of tens of micro K (in absorption) may be detectable with existing radio telescopes. Motivated by this exciting proposal, we perform a detailed analysis of the transfer of Lyman beta,gamma,delta,... radiation, and re-analyze the detectability of the fine-structure line in neutral intergalactic gas surrounding high-redshift quasars. We find that proper radiative transfer modeling causes the fine-structure absorption signature to be reduced tremendously to tau< 1e-10. We therefore conclude that neutral intergalactic gas during the EoR cannot reveal its presence in the 3-cm fine-structure line to existing radio telescopes.Comment: 7 pages, 4 figures, MNRAS in press; v2. some typos fixe

    Depletion potential in hard-sphere mixtures: theory and applications

    Full text link
    We present a versatile density functional approach (DFT) for calculating the depletion potential in general fluid mixtures. In contrast to brute force DFT, our approach requires only the equilibrium density profile of the small particles {\em before} the big (test) particle is inserted. For a big particle near a planar wall or a cylinder or another fixed big particle the relevant density profiles are functions of a single variable, which avoids the numerical complications inherent in brute force DFT. We implement our approach for additive hard-sphere mixtures. By investigating the depletion potential for high size asymmetries we assess the regime of validity of the well-known Derjaguin approximation for hard-sphere mixtures and argue that this fails. We provide an accurate parametrization of the depletion potential in hard-sphere fluids which should be useful for effective Hamiltonian studies of phase behavior and colloid structure

    Structure of laponite-styrene precursor dispersions for production of advanced polymer-clay nanocomposites

    Get PDF
    One method for production of polymer-clay nanocomposites involves dispersal of surface-modified clay in a polymerisable monomeric solvent, followed by fast in situ polymerisation. In order to tailor the properties of the final material we aim to control the dispersion state of the clay in the precursor solvent. Here, we study dispersions of surface-modified Laponite, a synthetic clay, in styrene via large-scale Monte-Carlo simulations and experimentally, using small angle X-ray and static light scattering. By tuning the effective interaction between simulated laponite particles we are able to reproduce the experimental scattering intensity patterns for this system, with good accuracy over a wide range of length scales. However, this agreement could only be obtained by introducing a permanent electrostatic dipole moment into the plane of each Laponite particle, which we explain in terms of the distribution of substituted metal atoms within each Laponite particle. This suggests that Laponite dispersions, and perhaps other clay suspensions, should display some of the structural characteristics of dipolar fluids. Our simulated structures show aggregation regimes ranging from networks of long chains to dense clusters of Laponite particles, and we also obtain some intriguing ‘globular’ clusters, similar to capsids. We see no indication of any ‘house-of-cards’ structures. The simulation that most closely matches experimental results indicates that gel-like networks are obtained in Laponite dispersions, which however appear optically clear and non-sedimenting over extended periods of time. This suggests it could be difficult to obtain truly isotropic equilibrium dispersion as a starting point for synthesis of advanced polymer-clay nanocomposites with controlled structures

    Sedimentation of binary mixtures of like- and oppositely charged colloids: the primitive model or effective pair potentials?

    Full text link
    We study sedimentation equilibrium of low-salt suspensions of binary mixtures of charged colloids, both by Monte Carlo simulations of an effective colloids-only system and by Poisson-Boltzmann theory of a colloid-ion mixture. We show that the theoretically predicted lifting and layering effect, which involves the entropy of the screening ions and a spontaneous macroscopic electric field [J. Zwanikken and R. van Roij, Europhys. Lett. {\bf 71}, 480 (2005)], can also be understood on the basis of an effective colloid-only system with pairwise screened-Coulomb interactions. We consider, by theory and by simulation, both repelling like-charged colloids and attracting oppositely charged colloids, and we find a re-entrant lifting and layering phenomenon when the charge ratio of the colloids varies from large positive through zero to large negative values

    Feasibility and short-term effects of Activity Coach+:a physical activity intervention in hard-to-reach people with a physical disability

    Get PDF
    Purpose: Existing physical activity interventions do not reach a considerable proportion of physically disabled people. This study assessed feasibility and short-term effects of Activity Coach+, a community-based intervention especially targeting this hard-to-reach population. Methods: Feasibility was determined by reach, dropouts, and compliance with the protocol. Physical activity was measured with the Activ8 accelerometer and the adapted SQUASH questionnaire. Health outcomes were assessed by body composition, blood pressure, hand grip force, 10-metre walk test, 6-minute walk test, and the Berg Balance Scale. The RAND-36, Exercise Self-Efficacy Scale, Fatigue Severity Scale, and IMPACT-S were administered. Measurements were performed at baseline and after 2 and 4 months. Changes over time were analysed by Friedman tests. Results: Twenty-nine participants enrolled during the first 4 months, of whom two dropped out. Intervention components were employed in 86–100% of the participants. Physical activity did not change after the implementation of Activity Coach+. Body mass index (p = 0.006), diastolic blood pressure (p = 0.032), walking ability (p = 0.002), exercise capacity (p = 0.013), balance (p = 0.014), and vitality (p = 0.049) changed over time. Conclusions: Activity Coach + is feasible in a community setting. Indications for effectivity of Activity Coach + in hard-to-reach people with a physical disability were found.Implications for rehabilitation Activity Coach + was able to reach physically disabled people living in community, a population that is assumed hard-to-reach. Activity Coach + was feasible in a population of persons with a physical disability that was heterogeneous with respect to age and (severity of) disability. The current study provides the first indications for the beneficial health effects of Activity Coach + in hard-to-reach people with a physical disability

    Entropic torque

    Full text link
    Quantitative predictions are presented of a depletion-induced torque and force acting on a single colloidal hard rod immersed in a solvent of hard spheres close to a planar hard wall. This torque and force, which are entirely of entropic origin, may play an important role for the key-lock principle, where a biological macromolecule (the key) is only functional in a particular orientation with respect to a cavity (the lock)

    Clustering of Ly-alpha emitters around luminous quasars at z = 2-3: an alternative probe of reionization on galaxy formation

    Full text link
    Narrowband observations have detected no Ly-alpha emission within a 70 pMpc^3 volume centered on the z = 2.168 quasar PKS 0424-131. This is in contrast to surveys of Ly-alpha emitters in the field at similar redshifts and flux limits, which indicate that tens of sources should be visible within the same volume. The observed difference indicates that the quasar environment has a significant influence on the observed density of Ly-alpha emitters. To quantify this effect we have constructed a semi-analytic model to simulate the effect of a luminous quasar on nearby Ly-alpha emitters. We find the null detection around PKS 0424-131 implies that the minimum isothermal temperature of Ly-alpha emitter host halos is greater than 3.4 x 10^6 K (68% level), corresponding to a virial mass of ~1.2 x 10^12 M_solar. This indicates that the intense UV emission of the quasar may be suppressing the star formation in nearby galaxies. Our study illustrates that low redshift quasar environments may serve as a surrogate for studying the radiative suppression of galaxy formation during the epoch of reionization.Comment: 9 pages, 5 figures, submitted to MNRA
    • 

    corecore