107 research outputs found

    Herpes simplex virus type 2 antibody detection performance in Kisumu, Kenya, using the Herpeselect ELISA, Kalon ELISA, Western blot and inhibition testing

    Get PDF
    In certain parts of Africa, type-specific HSV type-2 ELISAs may have limited specificity. To date, no study has been conducted to validate HerpeSelect and Kalon type-specific HSV-2 ELISAs using both the Western blot (WB) and Recombinant gG ELISA inhibition testing as reference standards

    Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data

    Get PDF
    © 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Ioannis Kioutsioukis, et al, ‘Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data’, Atmospheric Chemistry and Physics, Vol 16(24): 15629-15652, published 20 December 2016, the version of record is available at doi:10.5194/acp-16-15629-2016 Published by Copernicus Publications on behalf of the European Geosciences Union.Simulations from chemical weather models are subject to uncertainties in the input data (e.g. emission inventory, initial and boundary conditions) as well as those intrinsic to the model (e.g. physical parameterization, chemical mechanism). Multi-model ensembles can improve the forecast skill, provided that certain mathematical conditions are fulfilled. In this work, four ensemble methods were applied to two different datasets, and their performance was compared for ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM10). Apart from the unconditional ensemble average, the approach behind the other three methods relies on adding optimum weights to members or constraining the ensemble to those members that meet certain conditions in time or frequency domain. The two different datasets were created for the first and second phase of the Air Quality Model Evaluation International Initiative (AQMEII). The methods are evaluated against ground level observations collected from the EMEP (European Monitoring and Evaluation Programme) and AirBase databases. The goal of the study is to quantify to what extent we can extract predictable signals from an ensemble with superior skill over the single models and the ensemble mean. Verification statistics show that the deterministic models simulate better O3 than NO2 and PM10, linked to different levels of complexity in the represented processes. The unconditional ensemble mean achieves higher skill compared to each station's best deterministic model at no more than 60 % of the sites, indicating a combination of members with unbalanced skill difference and error dependence for the rest. The promotion of the right amount of accuracy and diversity within the ensemble results in an average additional skill of up to 31 % compared to using the full ensemble in an unconditional way. The skill improvements were higher for O3 and lower for PM10, associated with the extent of potential changes in the joint distribution of accuracy and diversity in the ensembles. The skill enhancement was superior using the weighting scheme, but the training period required to acquire representative weights was longer compared to the sub-selecting schemes. Further development of the method is discussed in the conclusion.Peer reviewedFinal Published versio

    Seasonal ozone vertical profiles over North America using the AQMEII3 group of air quality models: model inter-comparison and stratospheric intrusions

    Get PDF
    This study evaluates simulated vertical ozone profiles produced in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) against ozonesonde observations in North America for the year 2010. Four research groups from the United States (US) and Europe have provided modeled ozone vertical profiles to conduct this analysis. Because some of the modeling systems differ in their meteorological drivers, wind speed and temperature are also included in the analysis. In addition to the seasonal ozone profile evaluation for 2010, we also analyze chemically inert tracers designed to track the influence of lateral boundary conditions on simulated ozone profiles within the modeling domain. Finally, cases of stratospheric ozone intrusions during May–June 2010 are investigated by analyzing ozonesonde measurements and the corresponding model simulations at Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS) experiment sites in the western United States. The evaluation of the seasonal ozone profiles reveals that, at a majority of the stations, ozone mixing ratios are underestimated in the 1–6&thinsp;km range. The seasonal change noted in the errors follows the one seen in the variance of ozone mixing ratios, with the majority of the models exhibiting less variability than the observations. The analysis of chemically inert tracers highlights the importance of lateral boundary conditions up to 250&thinsp;hPa for the lower-tropospheric ozone mixing ratios (0–2&thinsp;km). Finally, for the stratospheric intrusions, the models are generally able to reproduce the location and timing of most intrusions but underestimate the magnitude of the maximum mixing ratios in the 2–6&thinsp;km range and overestimate ozone up to the first kilometer possibly due to marine air influences that are not accurately described by the models. The choice of meteorological driver appears to be a greater predictor of model skill in this altitude range than the choice of air quality model.</p

    Comparison of exercise testing and CMR measured myocardial perfusion reserve for predicting outcome in asymptomatic aortic stenosis: the PRognostic Importance of MIcrovascular Dysfunction in Aortic Stenosis (PRIMID AS) study

    Get PDF
    Aims To assess cardiovascular magnetic resonance (CMR) measured myocardial perfusion reserve (MPR) and exercise testing in asymptomatic patients with moderate-severe AS. Methods and results Multi-centre, prospective, observational study, with blinded analysis of CMR data. Patients underwent adenosine stress CMR, symptom-limited exercise testing (ETT) and echocardiography and were followed up for 12–30 months. The primary outcome was a composite of: typical AS symptoms necessitating referral for AVR, cardiovascular death and major adverse cardiovascular events. 174 patients were recruited: mean age 66.2 ± 13.34 years, 76% male, peak velocity 3.86 ± 0.56 m/s and aortic valve area index 0.57 ± 0.14 cm2/m2. A primary outcome occurred in 47 (27%) patients over a median follow-up of 374 (IQR 351–498) days. The mean MPR in those with and without a primary outcome was 2.06 ± 0.65 and 2.34 ± 0.70 (P = 0.022), while the incidence of a symptom-limited ETT was 45.7% and 27.0% (P = 0.020), respectively. MPR showed moderate association with outcome area under curve (AUC) = 0.61 (0.52–0.71, P = 0.020), as did exercise testing (AUC = 0.59 (0.51–0.68, P = 0.027), with no significant difference between the two. Conclusions MPR was associated with symptom-onset in initially asymptomatic patients with AS, but with moderate accuracy and was not superior to symptom-limited exercise testing. ClinicalTrials.gov (NCT01658345)

    Age and skill bias of trade liberalisation? : heterogeneous employment effects of EU Eastern Enlargement

    Get PDF
    This study analyses the 2004 Eastern Enlargement to the European Union to obtain evidence on the employment effects of an increase in trade liberalisation. The Enlargement is thought to generate a trade-induced demand shock with no (or only limited) supply effects. Besides the variation over time induced by the Enlargement, identification of the effects is based on a Melitz (2003) type productivity term to differentiate firms by the extent of exposure to the demand shock. The idea is that the effects of the demand shock should be driven by differences in firm-level productivity from the period before the new member countries actually entered the EU. German linked employer-employee data allow to observe the relation of initial establishment productivity with employment changes over a long panel from 1995 to 2009. The estimates show that the Enlargement had a negative effect on establishment-level employment growth, which is driven by increased worker separations and increased job destruction. Besides the overall employment effect, the study focuses on effect heterogeneity across age and skill groups of the workforce. These estimates point to a skill bias in the effect of the Enlargement that disadvantages low- and medium-skilled workers in terms of higher worker separation and job destruction. In addition, lowskilled workers suffer fewer accessions by firms, where against medium-skilled workers enjoy increased accessions and creation of new jobs. Besides this indication for a skill bias, there are no clear indications that point to an age bias in the employment effect of the Eastern Enlargement

    Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data

    Get PDF
    Simulations from chemical weather models are subject to uncertainties in the input data (e.g. emission inventory, initial and boundary conditions) as well as those intrinsic to the model (e.g. physical parameterization, chemical mechanism). Multi-model ensembles can improve the forecast skill, provided that certain mathematical conditions are fulfilled. In this work, four ensemble methods were applied to two different datasets, and their performance was compared for ozone (O3_{3}), nitrogen dioxide (NO2_{2}) and particulate matter (PM10_{10}). Apart from the unconditional ensemble average, the approach behind the other three methods relies on adding optimum weights to members or constraining the ensemble to those members that meet certain conditions in time or frequency domain. The two different datasets were created for the first and second phase of the Air Quality Model Evaluation International Initiative (AQMEII). The methods are evaluated against ground level observations collected from the EMEP (European Monitoring and Evaluation Programme) and AirBase databases. The goal of the study is to quantify to what extent we can extract predictable signals from an ensemble with superior skill over the single models and the ensemble mean. Verification statistics show that the deterministic models simulate better O3_{3} than NO2_{2} and PM10_{10}, linked to different levels of complexity in the represented processes. The unconditional ensemble mean achieves higher skill compared to each station’s best deterministic model at no more than 60% of the sites, indicating a combination of members with unbalanced skill difference and error dependence for the rest. The promotion of the right amount of accuracy and diversity within the ensemble results in an average additional skill of up to 31% compared to using the full ensemble in an unconditional way. The skill improvements were higher for O3_{3} and lower for PM10_{10}, associated with the extent of potential changes in the joint distribution of accuracy and diversity in the ensembles. The skill enhancement was superior using the weighting scheme, but the training period required to acquire representative weights was longer compared to the sub-selecting schemes. Further development of the method is discussed in the conclusion

    Harmonization of Zika neutralization assays by using the WHO International Standard for anti-Zika virus antibody

    Get PDF
    During outbreaks of emerging viruses, such as the Zika outbreak in 2015–2016, speed and accuracy in detection of infection are critical factors to control the spread of the disease; often serological and diagnostic methods for emerging viruses are not well developed and validated. Thus, vaccines and treatments are difficult to evaluate due to the lack of comparable methods. In this study, we show how the 1st WHO International Standard for anti-Zika antibody was able to harmonize the neutralization titres of a panel of serological Zika-positive samples from laboratories worldwide. Expression of the titres in International Unit per millilitre reduced the inter-laboratory variance, allowing for greater comparability between laboratories. We advocate the use of the International Standard for anti-Zika virus antibodies for the calibration of neutralization assays to create a common language, which will permit a clear evaluation of the results of different clinical trials and expedite the vaccine/treatment development

    Thermostable DNA Polymerase from a Viral Metagenome Is a Potent RT-PCR Enzyme

    Get PDF
    Viral metagenomic libraries are a promising but previously untapped source of new reagent enzymes. Deep sequencing and functional screening of viral metagenomic DNA from a near-boiling thermal pool identified clones expressing thermostable DNA polymerase (Pol) activity. Among these, 3173 Pol demonstrated both high thermostability and innate reverse transcriptase (RT) activity. We describe the biochemistry of 3173 Pol and report its use in single-enzyme reverse transcription PCR (RT-PCR). Wild-type 3173 Pol contains a proofreading 3′-5′ exonuclease domain that confers high fidelity in PCR. An easier-to-use exonuclease-deficient derivative was incorporated into a PyroScript RT-PCR master mix and compared to one-enzyme (Tth) and two-enzyme (MMLV RT/Taq) RT-PCR systems for quantitative detection of MS2 RNA, influenza A RNA, and mRNA targets. Specificity and sensitivity of 3173 Pol-based RT-PCR were higher than Tth Pol and comparable to three common two-enzyme systems. The performance and simplified set-up make this enzyme a potential alternative for research and molecular diagnostics

    A single-point modeling approach for the intercomparison and evaluation of ozone dry deposition across chemical transport models (Activity 2 of AQMEII4)

    Get PDF
    A primary sink of air pollutants and their precursors is dry deposition. Dry deposition estimates differ across chemical transport models, yet an understanding of the model spread is incomplete. Here, we introduce Activity 2 of the Air Quality Model Evaluation International Initiative Phase 4 (AQMEII4). We examine 18 dry deposition schemes from regional and global chemical transport models as well as standalone models used for impact assessments or process understanding. We configure the schemes as single-point models at eight Northern Hemisphere locations with observed ozone fluxes. Single-point models are driven by a common set of site-specific meteorological and environmental conditions. Five of eight sites have at least 3 years and up to 12 years of ozone fluxes. The interquartile range across models in multiyear mean ozone deposition velocities ranges from a factor of 1.2 to 1.9 annually across sites and tends to be highest during winter compared with summer. No model is within 50 % of observed multiyear averages across all sites and seasons, but some models perform well for some sites and seasons. For the first time, we demonstrate how contributions from depositional pathways vary across models. Models can disagree with respect to relative contributions from the pathways, even when they predict similar deposition velocities, or agree with respect to the relative contributions but predict different deposition velocities. Both stomatal and nonstomatal uptake contribute to the large model spread across sites. Our findings are the beginning of results from AQMEII4 Activity 2, which brings scientists who model air quality and dry deposition together with scientists who measure ozone fluxes to evaluate and improve dry deposition schemes in the chemical transport models used for research, planning, and regulatory purposes.</p
    • …
    corecore