211 research outputs found

    Spin Glass Field Theory with Replica Fourier Transforms

    Get PDF
    We develop a field theory for spin glasses using Replica Fourier Transforms (RFT). We present the formalism for the case of replica symmetry and the case of replica symmetry breaking on an ultrametric tree, with the number of replicas nn and the number of replica symmetry breaking steps RR generic integers. We show how the RFT applied to the two-replica fields allows to construct a new basis which block-diagonalizes the four-replica mass-matrix, into the replicon, anomalous and longitudinal modes. The eigenvalues are given in terms of the mass RFT and the propagators in the RFT space are obtained by inversion of the block-diagonal matrix. The formalism allows to express any ii-replica vertex in the new RFT basis and hence enables to perform a standard perturbation expansion. We apply the formalism to calculate the contribution of the Gaussian fluctuations around the Parisi solution for the free-energy of an Ising spin glass.Comment: 39 pages, 3 figure

    On the hybrid origin of Narcissus biflorus (Amaryllidaceae): analysis of C-banding and rDNA structure

    Get PDF
    Abstract Giemsa and fluorochrome banding with DAPI and chromomycin A3, were utilized to assess karyological details which correlate N. biflorus with the parental species: N. tazetta and N. poeticus. The banding profile in N. biflorus clearly reproduced the model of its progenitors. The EcoR1 restriction pattern of rDNA obtained by Southern blot hybridization indicated, in our material, that each species has more than one ribosomal gene type and in N. biflorus both the ribosomal repeat units of the progenitor species are present

    Statistical mechanics of the random K-SAT model

    Full text link
    The Random K-Satisfiability Problem, consisting in verifying the existence of an assignment of N Boolean variables that satisfy a set of M=alpha N random logical clauses containing K variables each, is studied using the replica symmetric framework of diluted disordered systems. We present an exact iterative scheme for the replica symmetric functional order parameter together for the different cases of interest K=2, K>= 3 and K>>1. The calculation of the number of solutions, which allowed us [Phys. Rev. Lett. 76, 3881 (1996)] to predict a first order jump at the threshold where the Boolean expressions become unsatisfiable with probability one, is thoroughly displayed. In the case K=2, the (rigorously known) critical value (alpha=1) of the number of clauses per Boolean variable is recovered while for K>=3 we show that the system exhibits a replica symmetry breaking transition. The annealed approximation is proven to be exact for large K.Comment: 34 pages + 1 table + 8 fig., submitted to Phys. Rev. E, new section added and references update

    Nucleoli, rRNA Genes and ITS Region in Posidonia Oceanica (L.) Delile

    Get PDF
    The maximum number of nucleoli was counted in interphase nuclei of Posidonia oceanica, and a restriction pattern of nuclear rDNA was obtained after digestion with four restriction endonucleases and Southern hybridization. P. oceanica has only one type of ribosomal gene whose size was estimated to be 18.5 kbp long. The nucleotide sequence of the entire ITS region was also determined by direct sequencing of PCR amplified DNA fragments. The sequence of the ITS region was aligned with those of homologous regions of other monocots available in literature, and phylogenetic trees were obtained

    Domain wall propagation and nucleation in a metastable two-level system

    Full text link
    We present a dynamical description and analysis of non-equilibrium transitions in the noisy one-dimensional Ginzburg-Landau equation for an extensive system based on a weak noise canonical phase space formulation of the Freidlin-Wentzel or Martin-Siggia-Rose methods. We derive propagating nonlinear domain wall or soliton solutions of the resulting canonical field equations with superimposed diffusive modes. The transition pathways are characterized by the nucleations and subsequent propagation of domain walls. We discuss the general switching scenario in terms of a dilute gas of propagating domain walls and evaluate the Arrhenius factor in terms of the associated action. We find excellent agreement with recent numerical optimization studies.Comment: 28 pages, 16 figures, revtex styl

    Viscous Instanton for Burgers' Turbulence

    Full text link
    We consider the tails of probability density functions (PDF) for different characteristics of velocity that satisfies Burgers equation driven by a large-scale force. The saddle-point approximation is employed in the path integral so that the calculation of the PDF tails boils down to finding the special field-force configuration (instanton) that realizes the extremum of probability. We calculate high moments of the velocity gradient xu\partial_xu and find out that they correspond to the PDF with ln[P(xu)](xu/Re)3/2\ln[{\cal P}(\partial_xu)]\propto-(-\partial_xu/{\rm Re})^{3/2} where Re{\rm Re} is the Reynolds number. That stretched exponential form is valid for negative xu\partial_xu with the modulus much larger than its root-mean-square (rms) value. The respective tail of PDF for negative velocity differences ww is steeper than Gaussian, lnP(w)(w/urms)3\ln{\cal P}(w)\sim-(w/u_{\rm rms})^3, as well as single-point velocity PDF lnP(u)(u/urms)3\ln{\cal P}(u)\sim-(|u|/u_{\rm rms})^3. For high velocity derivatives u(k)=xkuu^{(k)}=\partial_x^ku, the general formula is found: lnP(u(k))(u(k)/Rek)3/(k+1)\ln{\cal P}(|u^{(k)}|)\propto -(|u^{(k)}|/{\rm Re}^k)^{3/(k+1)}.Comment: 15 pages, RevTeX 3.

    Static chaos and scaling behaviour in the spin-glass phase

    Full text link
    We discuss the problem of static chaos in spin glasses. In the case of magnetic field perturbations, we propose a scaling theory for the spin-glass phase. Using the mean-field approach we argue that some pure states are suppressed by the magnetic field and their free energy cost is determined by the finite-temperature fixed point exponents. In this framework, numerical results suggest that mean-field chaos exponents are probably exact in finite dimensions. If we use the droplet approach, numerical results suggest that the zero-temperature fixed point exponent θ\theta is very close to d32\frac{d-3}{2}. In both approaches d=3d=3 is the lower critical dimension in agreement with recent numerical simulations.Comment: 28 pages + 6 figures, LateX, figures uuencoded at the end of fil

    Classical transverse Ising spin glass with short- range interaction beyond the mean field approximation

    Full text link
    The classical transverse field Ising spin- glass model with short-range interactions is investigated beyond the mean- field approximation for a real d- dimensional lattice. We use an appropriate nontrivial modification of the Bethe- Peierls method recently formulated for the Ising spin- glass. The zero- temperature critical value of the transverse field and the linear susceptibility in the paramagnetic phase are obtained analytically as functions of dimensionality d. The phase diagram is also calculated numerically for different values of d. In the limit d -> infinity, known mean- field results are consistently reproduced.Comment: LaTex, 11 pages, 2 figure

    Localization transition of random copolymers at interfaces

    Full text link
    We consider adsorption of random copolymer chains onto an interface within the model of Garel et al. Europhysics Letters 8, 9 (1989). By using the replica method the adsorption of the copolymer at the interface is mapped onto the problem of finding the ground state of a quantum mechanical Hamiltonian. To study this ground state we introduce a novel variational principle for the Green's function, which generalizes the well-known Rayleigh-Ritz method of Quantum Mechanics to nonstationary states. Minimization with an appropriate trial Green's function enables us to find the phase diagram for the localization-delocalization transition for an ideal random copolymer at the interface.Comment: 5 page

    Spin glass transition in a magnetic field: a renormalization group study

    Full text link
    We study the transition of short range Ising spin glasses in a magnetic field, within a general replica symmetric field theory, which contains three masses and eight cubic couplings, that is defined in terms of the fields representing the replicon, anomalous and longitudinal modes. We discuss the symmetry of the theory in the limit of replica number n to 0, and consider the regular case where the longitudinal and anomalous masses remain degenerate. The spin glass transitions in zero and non-zero field are analyzed in a common framework. The mean field treatment shows the usual results, that is a transition in zero field, where all the modes become critical, and a transition in non-zero field, at the de Almeida-Thouless (AT) line, with only the replicon mode critical. Renormalization group methods are used to study the critical behavior, to order epsilon = 6-d. In the general theory we find a stable fixed-point associated to the spin glass transition in zero field. This fixed-point becomes unstable in the presence of a small magnetic field, and we calculate crossover exponents, which we relate to zero-field critical exponents. In a finite magnetic field, we find no physical stable fixed-point to describe the AT transition, in agreement with previous results of other authors.Comment: 36 pages with 4 tables. To be published in Phys. Rev.
    corecore