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Abstract

We develop a field theory for spin glasses using Replica Fourier Transforms (RFT). We present
the formalism for the case of replica symmetry and the case of replica symmetry breaking
on an ultrametric tree, with the number of replicas n and the number of replica symmetry
breaking steps R generic integers. We show how the RFT applied to the two-replica fields
allows to construct a new basis which block-diagonalizes the four-replica mass-matrix, into the
replicon, anomalous and longitudinal modes. The eigenvalues are given in terms of the mass
RFT and the propagators in the RFT space are obtained by inversion of the block-diagonal
matrix. The formalism allows to express any i-replica vertex in the new RFT basis and hence
enables to perform a standard perturbation expansion. We apply the formalism to calculate
the contribution of the Gaussian fluctuations around the Parisi’s solution for the free-energy of
an Ising spin glass.
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1 Introduction

Spin glasses are disordered magnetic systems with frustration. These systems exhibit a freezing
transition to a low temperature phase with nontrivial properties [1]. There is still no consensus
on the nature of the glassy phase. Two different pictures have been proposed. One corresponds
to the Parisi solution [7, 8] of the infinite-range Sherrington-Kirkpatrick model [10], which
represents the mean field theory for spin glasses and predicts a glassy phase described by
an infinite number of pure states, organized in an ultrametric structure. The other one is the
”droplet” model [2, 5], which claims that in the experimentally relevant short-range spin glasses
the glassy phase is described by only two pure states, related by a global inversion of the spins.
An important step for the understanding of spin glasses, lies in the investigation of how the
fluctuations, associated into the finite-range interactions modify the mean-field picture.
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Edwards and Anderson [4] introduced a model for short-range spin glasses and used the
replica method to perform the average over quenched disorder. A field theory is built for the
spin glass with the free energy being written as a functional of replica fields Qab

i , which represent
the spin glass order parameter. In mean field theory it is found that a phase transition occurs
at a critical temperature, from a high-temperature phase with replica symmetry (RS) to a low-
temperature phase with replica symmetry breaking (RSB). The RSB ansatz proposed by Parisi
for the spin glass, represents many states in a hierarchical organization that is described by an
ultrametric tree. See De Dominicis et al [6] for a review on the spin glass field theory, in direct
replica space, with RSB. The high complexity of the theory has however inhibited the study of
the glassy phase.

In this article we develop a field theory for spin glasses using Replica Fourier Transforms
(RFT) [3]. We consider both the case of RS and the case of RSB on an ultrametric tree. We
define a new basis in terms of the RFT of the two-replica fields which block-diagonalizes the
four-replica mass-matrix, into three sets of modes, replicon, anomalous and longitudinal. The
corresponding eigenvalues are given in terms of the mass RFT. The propagators in the RFT
space are then readily obtained by inversion of the block-diagonal mass-matrix. The formalism
allows to express any i-replica vertex in the new RFT basis, and hence enables to perform a
standard perturbation expansion. We keep the number n of replicas a positive integer, the
limit n→ 0 of the replica method can be taken on the final results. The number of RSB steps
R is also considered a generic integer, the case of full RSB, proposed by Parisi, corresponding
to the limit R → ∞. We show that many fundamental results for the study of spin glasses,
can be simply derived within the RFT formalism. We apply the formalism to calculate the
contribution of the Gaussian fluctuations around the Parisi solution for the free energy of an
Ising spin glass. A detailed presentation of this work is given in [9].

2 Spin Glass Model

We consider an Ising spin glass in a uniform magnetic field H, described by the Edwards-
Anderson model

H = −
∑
〈ij〉

JijSiSj −H
∑
i

Si (1)

for N spins, Si = ±1, located on a regular d-dimensional lattice, where the bonds Jij , which
couple nearest-neighbor spins only, are independent random variables with a Gaussian distri-
bution, characterized by zero mean and variance Δ2 = J2/z, z = 2d being the coordination
number.

The free energy averaged over the quenched disorder is given, via the replica method, by

F = − 1

β
lnZ = − 1

β
lim
n→0

Zn − 1

n
(2)

where Z is the partition function and β = 1/kBT .
Taking the average of n replicas of the partition function Zn, with n integer, followed by a

Hubbard-Stratonovich transformation, to decouple a four-spin term, leads to

Zn =

∫ ∏
(ab);i

dQab
i√
2π

exp
{−L [Qab

i

]}
(3)

where the fields Qab
i , with replica index a = 1, . . . , n, are defined on an n(n− 1)/2-dimensional

replica space of pairs (ab) of distinct replicas, since Qab
i = Qba

i and Qaa
i = 0.

Spin Glass Field Theory . . . Pimentel and De Dominicis

803



A perturbation expansion around the mean-field solution is constructed by separating the
field Qab

i into Qab
i = Qab + φab

i , where Qab represents the mean field order parameter and φab
i

are fluctuations around it. The Lagrangian L is then given by

L = L(0) + L(1) + L(2) + . . . (4)

where, after Fourier transform into momenta space, one has, for contributions up to quadratic
order in the fluctuations,

L(0) = −Nn(βJ)2

4
+

N(βJ)2

2

∑
(ab)

(Qab)2 −N ln tr
{Sa}

exp

⎧⎨
⎩(βJ)2

∑
(ab)

QabSaSb + βH
∑
a

Sa

⎫⎬
⎭
(5)

L(1) =
√
N(βJ)2

∑
(ab)

[
Qab − 〈SaSb

〉]
φab
p=0 (6)

L(2) =
1

2

∑
(ab)(cd)

∑
p

φab
p Mab,cd(p)φcd

−p (7)

with
Mab,cd(p) = p2δKr

ab,cd + z
[
δKr
ab,cd − (βJ)2

(〈
SaSbScSd

〉 − 〈
SaSb

〉 〈
ScSd

〉)]
(8)

where Sa = Sa
i , and the expectation value 〈· · · 〉 is calculated with the normalized weight ζ(S)/

Trζ(S), where ζ(S) = exp
{
(βJ)2

∑
(ab) Q

abSaSb + βH
∑

a S
a
}
.

The mean-field value of the order parameter Qab is determined by the stationarity condition
L(1) = 0, which from (6) gives

Qab =
〈
SaSb

〉
. (9)

In zero magnetic field, H = 0, there is a phase transition at a critical temperature Tc = J/kB
from a high-temperature RS to a low-temperature RSB phase. In a nonzero magnetic field,
H �= 0, the phase transition occurs along a line in the field-temperature plane, the Almeida-
Thouless line.

The normal modes of the fluctuations of the order parameter are obtained by re-writing
L(2), (7), in a diagonal form. The propagators are then easily obtained by inversion of the
diagonalized matrix.

3 Replica Symmetric Ansatz

Here we consider that the mean-field order parameter is replica symmetric

Qab = Q, a �= b. (10)

In this case, there are three distinct masses

Mab,ab = M11, Mab,ac = Mab,bc = M10, Mab,cd = M00. (11)

The Lagrangian term of the fluctuations L(2), (7), then takes the form

L(2)=
1

2

⎧⎨
⎩M11

∑
(ab)

φ2
ab +M10

∑
(abc)

(φabφac + φabφbc) +M00

∑
(abcd)

φabφcd

⎫⎬
⎭ (12)
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where the dependence on momentum p is implicit and the sums are restricted to distinct
replicas.

One can write L(2) in terms of sums over unrestricted replicas, with the field constraints

φaa = 0, a = 1, . . . , n. (13)

The RFT for the two-replica fields, and its inverse transformation, are defined as

φâb̂ =
1

n

∑
ab

e−
2πi
n (aâ+bb̂)φab, φab =

1

n

∑
âb̂

e
2πi
n (aâ+bb̂)φâb̂ (14)

with a = 1, . . . , n, â = 0, . . . , n − 1, and a, â considered mod(n). The fields can be written as

φâb̂ = φâ,t̂−â, where t̂ = â+ b̂.

One then obtains the expression of L(2) in terms of the RFT of the two-replica fields, with
the field constraints in (13) given by

n−1∑
â=0

φâ,t̂−â = 0, t̂ = 0, . . . , n− 1. (15)

Now, one separates in L(2) the fields with indices 0̂, (using 0̂ when â = 0), and define the
new fields,

Φâ′,−â′ = φâ′,−â′ +
1

n− 1
φ0̂,0̂ (16)

Φâ′′,t̂′−â′′ = φâ′′,t̂′−â′′ +
1

n− 2

(
φ0̂,t̂′ + φt̂′,0̂

)
(17)

with â′ �= 0̂, t̂′ �= 0̂ and â′′ �= 0̂, t̂′.
Introducing the new fields, one obtains L(2) in the diagonal form,

L(2) =
1

2

⎧⎨
⎩MR

∑
â′

∣∣RΦâ′,−â′
∣∣2 +MR

∑
t̂′,â′′

∣∣RΦâ′′,t̂′−â′′
∣∣2 +MA

∑
t̂′

∣∣∣Aφ0̂,t̂′

∣∣∣2 +ML

∣∣∣Lφ0̂,0̂

∣∣∣2
⎫⎬
⎭
(18)

where

MR = M̂11, MA = M̂11 +
1

4
(n− 2)M̂10, ML = M̂11 +

1

2
(n− 1)M̂00 (19)

are given in terms of the RFT of the original masses, which are defined as [3]

M̂11 = M11 − 2M10 +M00, M̂10 = 4(M10 −M00), M̂00 = 4(M10 −M00) + nM00. (20)

and
RΦâ′,−â′ =

1√
2
Φâ′,−â′ , RΦâ′′,t̂′−â′′ =

1√
2
Φâ′′,t̂′−â′′ (21)

Aφ0̂,t̂′ =

√
n

(n− 2)
φ0̂,t̂′ ,

Lφ0̂,0̂ =

√
n

2(n− 1)
φ0̂,0̂ (22)

with the fields in (21) having the properties, which follow from (15),∑
â′

RΦâ′,−â′ = 0,
∑
â′′

RΦâ′′,t̂′−â′′ = 0. (23)
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Figure 1: Tree representation for an R = 2 RSB ansatz

One can see from (18) that the fluctuation space is divided into three sectors, which we identify
as the replicon (R) with eigenvalue MR, the anomalous (A) with eigenvalue MA, and the
longitudinal (L) with eigenvalue ML. The degeneracies of the eigenvalues are given by the
multiplicities of the fields, μ1 = (n−3)/2 for RΦâ′,−â′ and μ2 = (n−1)(n−3)/2 for RΦâ′′,t̂′−â′′

leads to μR = μ1+μ2 = n(n−3)/2 for the replicon, μA = (n−1) for the anomalous and μL = 1
for the longitudinal, so that the total number of modes is recovered μR+μA+μL = n(n−1)/2.

The propagators for the longitudinal, anomalous and replicon fields, obtained from (18), are
given by

LG0̂;0̂ =
〈
Lφ0̂,0̂

Lφ0̂,0̂

〉
=

1

ML
(24)

AGt̂′;ŝ′ =
〈
Aφ0̂,t̂′

Aφ∗
0̂,ŝ′

〉
= δt̂′,ŝ′

1

MA
(25)

RGâ′;b̂′ =
〈
RΦâ′,−â′RΦb̂′,−b̂′

〉
=

1

2

[(
δâ′,b̂′ + δâ′,−b̂′

)
− 2

n− 1

]
1

MR
(26)

RGâ′′,t̂′;b̂′′,ŝ′ =
〈
RΦâ′′,t̂′−â′′

RΦ∗
b̂′′,ŝ′−b̂′′

〉
= δt̂′,ŝ′

1

2

[(
δâ′′,b̂′′ + δâ′′,ŝ′−b̂′′

)
− 2

n− 2

]
1

MR
. (27)

The propagators in the direct replica space, Gab,cd, can be easily obtained, in terms of their
RFT expression, as shown in [9].

4 Replica Symmetry Breaking: Parisi’s Ansatz

The RSB ansatz proposed by Parisi for the mean-field order parameter can be described in
terms of a tree whose extremities are the n replicas a = 1, 2, . . . , n, and which, for R steps
of RSB, foliates at the various levels r = 0, 1, 2, . . . , R with multiplicity nr = pr/pr+1, where
p0 = n and pR+1 = 1, as illustrated in figure 1. Each replica is associated to a string of tree
coordinates, a : [a0, a1, . . . , aR], which tells the path to reach replica a. Each component takes
nr values, ar = 1, 2, . . . , nr. The overlap of replicas a and b is defined as

a ∩ b = r, 0 ≤ r ≤ R+ 1 (28)

if a0 = b0, . . . , ar−1 = br−1, but ar �= br

with a ∩ b = R + 1 corresponding to a = b. At the rth level of hierarchy the order parameter
takes the value Qab = Qr, having Qaa = QR+1 = 0. The tree displays ultrametricity, that is,
given three replicas a, b, c, the overlaps between these replicas, a ∩ b = r, a ∩ c = s, b ∩ c = t,
either are all equal, or one is larger than the others, but then these are equal (e.g., r = s ≤ t).
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u v 

a c d b a d c b 
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v 

Figure 2: Tree representation for the replicon sector. The figure shows the two possible struc-
tures compatible with the replicon geometry

t

r s

a b c d

t < r < s

r
t

s

a b c d

r < t < s r < s < t

r
s

t

a c b d

Figure 3: Tree representation for the longitudinal-anomalous sector. Exchanging r and s leads
to equivalent structures

Now we consider the Lagrangian term of the fluctuations L(2), (7). The fields are charac-
terized by the overlap of the replicas and depend on the tree coordinates

φab = φr =

[
a0 . . . ar−1ar . . . aR
a0 . . . ar−1br . . . bR

]
=

[
a0 . . . ar−1

ar . . . aR
br . . . bR

]
ar �= br (29)

with r = a ∩ b and φaa = φR+1 = 0.
The mass-matrix depends only on the overlaps of the replicas, and can be parametrized as

follows,
Mab,cd = Mr,s

u,v (30)

with r = a ∩ b, s = c ∩ d, u = max (a ∩ c, a ∩ d) and v = max (b ∩ c, b ∩ d). Ultrametricity
implies that with four replicas there are generically three overlaps, i.e., among the overlaps r,
s, u, v at least two are equal; r, s are direct-overlaps and u, v are cross-overlaps.

The Lagrangian L(2) is then written as

L(2) =
∑

r,s;u,v

∑
{a,b,c,d}

φrM
r,s
u,vφs (31)

with 0 ≤ r, s ≤ R, 0 ≤ u, v ≤ R + 1, and where the sum over the set {a, b, c, d} depends on
the overlaps r, s, u, v; again the dependence on momentum space p is implicit. The possible
geometries of the tree representation of the mass-matrix, (30), are presented in figures 2 and 3.
We distinguish two sets of contributions:

• the replicon (R) configurations, in figure 2, are characterized by two identical upper
indices, r = s, and two lower indices u, v ≥ r + 1, Mr,s

u,v = Mr,r
u,v;

• the longitudinal-anomalous (LA) configurations, in figure 3, are characterized by a single
lower index, t = max(u, v) (the other lower index is r, s, or t) and two upper indices r, s
(where it may happen, accidently, that r = s), Mr,s

u,v = Mr,s
t .
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We now generalize the RFT introduced in (14). To RFT with respect to replica a on a tree,
we RFT each of the [ar] coordinates of a on the tree. Focusing on [ar], one defines

φ [âr] =
1√
nr

∑
ar

e−
2πi
nr

ar ârφ [ar] , φ [ar] =
1√
nr

∑
âr

e
2πi
nr

ar ârφ [âr] (32)

where âr takes nr = pr/pr+1 values on the circle, âr = 0, 1, 2, . . . , nr − 1, mod(nr).
Let us then carry out the steps needed to accomplish the diagonalization of the Lagrangian

L(2):

1. Write the expression for the various contributions to L(2);

2. For the cross-overlaps t, u, v, transform the restricted sums over the tree coordinates into
unrestricted sums, and regroup the terms among the various contributions;

3. Perform the RFT on all the tree coordinates a, b, c, d of the replicas;

4. Separate in the sums over the tree coordinates of the replicas, the 0̂ components.

The restrictions on the tree coordinates associate with the direct-overlaps r, s are incorporated

in the RFT of

[
ar
br

]
ar �=br

, which defines the marker

(
μ̂r

γ̂r − μ̂r

)
=

[
μ̂r

γ̂r − μ̂r

]
− 1

nr
[γ̂r] (33)

with the notation [γ̂r] =
∑

âr

[
âr

γ̂r − âr

]
. The marker has the property

∑
μ̂r

(
μ̂r

γ̂r − μ̂r

)
= 0. (34)

We define a set of new fields,{
μ̂′
r

γ̂r − μ̂′
r

}
=

(
μ̂′
r

γ̂r − μ̂′
r

)
+

1

nr − 1

(
0̂r
γ̂r

)
(35)

{
μ̂′′
r

γ̂′
r − μ̂′′

r

}
=

(
μ̂′′
r

γ̂′
r − μ̂′′

r

)
+

1

nr − 2

[(
0̂r
γ̂′
r

)
+

(
γ̂′
r

0̂r

)]
(36)

with μ̂′
r �= 0̂r, γ̂

′
r �= 0 and μ̂′′

r �= 0̂r, γ̂
′
r.

The complete replicon contribution, provided explicitly in [9], can be written in the generic
form

LR =
1

2

R∑
r=0

R+1∑
u,v=r+1

∑
{γ̂,μ̂,ν̂}

M̂r,r
u,v

∣∣RΦr
u,v

∣∣2 (37)

where M̂r,r
u,v is the replicon mass, which is given by the mass double RFT [3],

M̂r,r
u,v =

R+1∑
k=u

R+1∑
l=v

pkpl

(
Mr,r

k,l −Mr,r
k−1,l −Mr,r

k,l−1 +Mr,r
k−1,l−1

)
(38)
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and RΦr
u,v are the replicon fields, defined as:

RΦr
u,v

(
μ̂r

γ̂r − μ̂r

)
= N1

[
γ̂0 . . . γ̂r−1

(
μ̂r

γ̂r − μ̂r

)
μ̂r+1 . . . μ̂

′
u−10̂u . . . 0̂v−10̂v . . . 0̂R

ν̂r+1 . . . ν̂u−1ν̂u . . . ν̂
′
v−10̂v . . . 0̂R

]
SN
(39)

for u, v > r + 1 , with multiplicity

μ(r;u, v) =
1

2
p0 (pr − pr+1)

(
1

pu
− 1

pu−1

)(
1

pv
− 1

pv−1

)
; (40)

RΦr
r+1,v

(
μ̂′
r

γ̂r − μ̂′
r

)
= N2

[
γ̂0 . . . γ̂r−1

{
μ̂′
r

γ̂r − μ̂′
r

}
0̂r+1 . . . 0̂v−10̂v . . . 0̂R
ν̂r+1 . . . ν̂

′
v−10̂v . . . 0̂R

]
SN

(41)

for u = r + 1, v > r + 1 (or v = r + 1, u > r + 1), with multiplicity

μ(r; r + 1, v) =
1

2
p0

(
pr

pr+1
− 2

)(
1

pv
− 1

pv−1

)
; (42)

RΦr
r+1,r+1

(
μ̂′
r

−μ̂′
r

)
= N3

[
γ̂0 . . . γ̂r−1

{
μ̂′
r

−μ̂′
r

}
0̂r+1 . . . 0̂R
0̂r+1 . . . 0̂R

]
SN

(43)

with multiplicity

μ1(r; r + 1, r + 1) =
1

2
p0

(
pr

pr+1
− 3

)
1

pr
; (44)

RΦr
r+1,r+1

(
μ̂′′
r

γ̂′
r − μ̂′′

r

)
= N4

[
γ̂0 . . . γ̂r−1

{
μ̂′′
r

γ̂′
r − μ̂′′

r

}
0̂r+1 . . . 0̂R
0̂r+1 . . . 0̂R

]
SN

(45)

with multiplicity

μ2(r; r + 1, r + 1) =
1

2
p0

(
pr

pr+1
− 3

)(
1

pr+1
− 1

pr

)
. (46)

All the fields are symmetrized (S) at the marker and normalized (N), the constants N1, N2,
N3, N4 can be found in [9].

The replicon fields have the properties, which follow from (34),

∑
μ̂r

RΦr
u,v

(
μ̂r

γ̂r − μ̂r

)
= 0,

∑
μ̂′
r

RΦr
r+1,v

(
μ̂′
r

γ̂r − μ̂′
r

)
= 0, (47)

∑
μ̂′
r

RΦr
r+1,r+1

(
μ̂′
r

−μ̂′
r

)
= 0,

∑
μ̂′′
r

RΦr
r+1,r+1

(
μ̂′′
r

γ̂′
r − μ̂′′

r

)
= 0. (48)

The propagators for the replicon fields, obtained from (37), are given by:

RGr
u,v

(
μ̂r, γ̂r; η̂r, λ̂r

)
= δγ,λ

[
δμ,η − 1

nr

]
1

M̂r,r
u,v

(49)

RGr
r+1,v

(
μ̂′
r, γ̂r; η̂

′
r, λ̂r

)
= δγ,λ

[
δμ′,η′ − 1

nr − 1

]
1

M̂r,r
r+1,v

(50)
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RGr
r+1,r+1

(
μ̂′
r, 0̂r; η̂

′
r, 0̂r

)
=

[
1

2
(δμ′,η′ + δμ′,−η′)− 1

nr − 1

]
1

M̂r,r
r+1,r+1

(51)

RGr
r+1,r+1

(
μ̂′′
r , γ̂

′
r; η̂

′′
r , λ̂

′
r

)
= δγ′,λ′

[
1

2
(δμ′′,η′′ + δγ′−μ′′,η′′)− 1

nr − 2

]
1

M̂r,r
r+1,r+1

. (52)

The complete longitudinal-anomalous contribution, provided explicitly in [9], can be written
in the generic form

LLA =
1

2

R+1∑
t=0

R∑
r,s=0

∑
{γ̂}

LAΨr
t

[
δKr
r,s Λ̂

r
t +

1

4

√
δ
(t−1)
r M̂r,s

t

√
δ
(t−1)
s

]
LAΨs∗

t (53)

where δ
(l)
r = p

(l)
r − p

(l)
r+1, with p

(l)
r = pr for r ≤ l, 2pr for r > l, Λ̂r

t is defined as

Λ̂r
t =

{
M̂r,r

t,r+1 t > r + 1

M̂r,r
r+1,r+1 t ≤ r + 1

(54)

with M̂r,r
u,v given by (38) and M̂r,s

t is the mass RFT [3],

M̂r,s
t =

R+1∑
k=t

p
(r,s)
k

(
Mr,s

k −Mr,s
k−1

)
(55)

with p
(r,s)
k = pk for k ≤ r ≤ s, 2pk for r < k ≤ s, 4pk for r ≤ s < k.

The longitudinal-anomalous fields LAΨr
t have the generic form:

LAΨr
t

(
0̂r
γ̂r

)
=

1√
2

[
γ̂0 . . . γ̂r−1

(
0̂r
γ̂r

)
0̂r+1 . . . 0̂t−10̂t . . . 0̂R
γ̂r+1 . . . γ̂

′
t−10̂t . . . 0̂R

]
SN

(56)

with multiplicity

μ(t) = p0

(
1

pt
− 1

pt−1

)
, μ(0) = 1. (57)

The propagators for the longitudinal-anomalous fields, obtained from (53), are given by:

LAĜr,s
t = δKr

r,s

1

Λ̂r
t

+
1

4

√
δ
(t−1)
r F̂ r,s

t

√
δ
(t−1)
s (58)

with

F̂ r,s
t = − 1

Λ̂r
t

M̂r,s
t

1

Λ̂s
t

− 1

Λ̂r
t

R∑
k=0

M̂r,k
t

δ
(t−1)
k

4
F̂ k,s
t . (59)

A fully explicit form for the solution of F̂ r,s
t can be found in [6] .

From (37) and (53) one sees that the Lagrangian, L(2) = LLA+LR, breaks up into a string
of (R + 1) × (R + 1) blocks followed by a string of 1 × 1 ”blocks” along the diagonal. The
(R + 1) × (R + 1) blocks correspond to the longitudinal–anomalous sector, they contain the
matrix elements M̂r,s

t with r, s = 0, . . . , R, and are labelled by the index t = 0, 1, . . . , R + 1,
(t = 0 is the longitudinal and t �= 0 are the anomalous). The 1 × 1 ”blocks” correspond to
the replicon sector, they are the elements M̂r,r

u,v with r = 0, . . . , R and u, v = r + 1, . . . , R + 1.
The total number of longitudinal-anomalous modes is μLA = (R + 1)n, and the total number
of replicon modes is μR = n(n − 1)/2 − (R + 1)n, so that the total number of modes is
μ = μLA + μR = n(n− 1)/2.

One can easily obtain the propagators in the direct replica space, Gab,cd, for general R, in
terms of their RFT expression, as shown in [9].
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5 Spin Glass Free Energy with Fluctuations

The spin glass free energy (2) can be written as

F = Fmf + Ffluct (60)

where

Fmf =
1

β
lim
n→0

L(0)

n
(61)

provides the mean field value of the free energy, with L(0) given by (5), and

Ffluct = − 1

β
lim
n→0

ln
[
Zn
]
fluct

n
(62)

provides the contribution of the fluctuations. For fluctuations up to the quadratic order,

[
Zn
]
fluct

=

∫
D (LAΨ

)D (RΦ
)
exp

{
−L(2)

}
(63)

where L(2) = LLA +LR, with LLA given by (53) and LR given by (37), the replicon fields ver-
ifying the constraints given by (47) and (48). Performing the integration over the longitudinal-
anomalous and the replicon fields in (63) considering the replicon constraints, one obtains for
the free-energy fluctuations,

Ffluct =
1

β
lim
n→0

1

2n

{
R+1∑
t=0

μ(t) ln det Δ̂t +

R∑
r=0

R+1∑
u,v=r+1

μ̄(r;u, v) ln M̂r,r
u,v (64)

−1

2

R∑
r=0

p0

[(
pr+1 +

1

pr+1

)
ln (pr+1) +

(
1− 1

pr+1

)(
pr

pr+1
+ pr − pr+1 − 3

)
ln 2

]}

where Δ̂t is

Δ̂r,s
t = δKr

r,s +
1

4

√
δ
(t−1)
r

M̂r,s
t

Λ̂r
t

√
δ
(t−1)
s (65)

the longitudinal-anomalous multiplicity μ(t) is given by (57) and

μ̄(r;u, v) =
1

2
p0 (pr − pr+1)

(
1

pu
− 1

pu−1

)(
1

pv
− 1

pv−1

)
, u, v > r + 1 (66)

μ̄(r; r + 1, v) =
1

2
p0 (pr − pr+1)

(
1

pv
− 1

pv−1

)
1

pr+1
, v > r + 1 (67)

μ̄(r; r + 1, r + 1) =
1

2
p0 (pr − pr+1)

1

p2r+1

. (68)

We note that in (64) there is a cancellation of terms between the longitudinal-anomalous
and the replicon contributions, which leads to the proper multiplicities μ̄ as remarked in [6].

For R = 0, (64) reduces to

Ffluct =
1

β
lim
n→0

1

2n

{
lnML + (n− 1) lnMA +

1

2
n(n− 3) lnMR

}
. (69)
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6 Conclusion

The field theory in RFT space provides a new tool to investigate the behaviour of spin glasses.
We have a field theory that is directly defined in terms of the replicon, anomalous and longi-
tudinal fields, in RFT space. We applied the formalism to calculate the contribution of the
Gaussian fluctuations around the Parisi mean field solution for the free energy of an Ising spin
glass. The propagators in the direct replica space can be simply related to the propagators in
the RFT space, which enables to calculate important physical quantities, such as the spin glass
and the nonlinear susceptibilities. It is of interest to evaluate the contribution of the different
fluctuation sectors, replicon, anomalous and longitudinal, to the various quantities. We expect
that the RFT field theory will allow to study the properties of the glassy phase, and hence
contribute for the understanding of spin glasses.
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