569 research outputs found

    The Unique Determination of Neuronal Currents in the Brain via Magnetoencephalography

    Full text link
    The problem of determining the neuronal current inside the brain from measurements of the induced magnetic field outside the head is discussed under the assumption that the space occupied by the brain is approximately spherical. By inverting the Geselowitz equation, the part of the current which can be reconstructed from the measurements is precisely determined. This actually consists of only certain moments of one of the two functions specifying the tangential part of the current. The other function specifying the tangential part of the current as well as the radial part of the current are completely arbitrary. However, it is also shown that with the assumption of energy minimization, the current can be reconstructed uniquely. A numerical implementation of this unique reconstruction is also presented

    The Origin And Loss Of Periodic Patterning In The Turtle Shell

    Get PDF
    The origin of the turtle shell over 200 million years ago greatly modified the amniote body plan, and the morphological plasticity of the shell has promoted the adaptive radiation of turtles. The shell, comprising a dorsal carapace and a ventral plastron, is a layered structure formed by basal endochondral axial skeletal elements (ribs, vertebrae) and plates of bone, which are overlain by keratinous ectodermal scutes. Studies of turtle development have mostly focused on the bones of the shell; however, the genetic regulation of the epidermal scutes has not been investigated. Here, we show that scutes develop from an array of patterned placodes and that these placodes are absent from a soft-shelled turtle in which scutes were lost secondarily. Experimentally inhibiting Shh, Bmp or Fgf signaling results in the disruption of the placodal pattern. Finally, a computational model is used to show how two coupled reaction-diffusion systems reproduce both natural and abnormal variation in turtle scutes. Taken together, these placodal signaling centers are likely to represent developmental modules that are responsible for the evolution of scutes in turtles, and the regulation of these centers has allowed for the diversification of the turtle shell

    Integrating research evidence and physical activity policy making-REPOPA project

    Get PDF
    Evidence shows that regular physical activity is enhanced by supporting environment. Studies are needed to integrate research evidence into health enhancing, cross-sector physical activity (HEPA) policy making. This article presents the rationale, study design, measurement procedures and the initial results of the first phase of six European countries in a five-year research project (2011–2016), REsearch into POlicy to enhance Physical Activity (REPOPA). REPOPA is programmatic research; it consists of linked studies; the first phase studied the use of evidence in 21 policies in implementation to learn more in depth from the policy making process and carried out 86 qualitative stakeholder interviews. The second, ongoing phase builds on the central findings of the first phase in each country; it consists of two sets of interventions: game simulations to study cross-sector collaboration and organizational change processes in the use of evidence and locally tailored interventions to increase knowledge integration. The results of the first two study phases will be tested and validated among policy makers and other stakeholders in the third phase using a Delphi process. Initial results from the first project phase showed the lack of explicit evidence use in HEPA policy making. Facilitators and barriers of the evidence use were the availability of institutional resources and support but also networking between researchers and policy makers. REPOPA will increase understanding use of research evidence in different contexts; develop guidance and tools and establish sustainable structures such as networks and platforms between academics and policy makers across relevant sectors

    Brief International Cognitive Assessment for MS (BICAMS): International Standards for Validation

    Get PDF
    An international expert consensus committee recently recommended a brief battery of tests for cognitive evaluation in multiple sclerosis. The Brief International Cognitive Assessment for MS (BICAMS) battery includes tests of mental processing speed and memory. Recognizing that resources for validation will vary internationally, the committee identified validation priorities, to facilitate international acceptance of BICAMS. Practical matters pertaining to implementation across different languages and countries were discussed. Five steps to achieve optimal psychometric validation were proposed. In Step 1, test stimuli should be standardized for the target culture or language under consideration. In Step 2, examiner instructions must be standardized and translated, including all information from manuals necessary for administration and interpretation. In Step 3, samples of at least 65 healthy persons should be studied for normalization, matched to patients on demographics such as age, gender and education. The objective of Step 4 is test-retest reliability, which can be investigated in a small sample of MS and/or healthy volunteers over 1–3 weeks. Finally, in Step 5, criterion validity should be established by comparing MS and healthy controls. At this time, preliminary studies are underway in a number of countries as we move forward with this international assessment tool for cognition in MS

    Independent component approach to the analysis of EEG and MEG recordings

    Full text link

    Attention Drives Synchronization of Alpha and Beta Rhythms between Right Inferior Frontal and Primary Sensory Neocortex

    Get PDF
    The right inferior frontal cortex (rIFC) is specifically associated with attentional control via the inhibition of behaviorally irrelevant stimuli and motor responses. Similarly, recent evidence has shown that alpha (7–14 Hz) and beta (15–29 Hz) oscillations in primary sensory neocortical areas are enhanced in the representation of non-attended stimuli, leading to the hypothesis that allocation of these rhythms plays an active role in optimal inattention. Here, we tested the hypothesis that selective synchronization between rIFC and primary sensory neocortex occurs in these frequency bands during inattention. We used magnetoencephalography to investigate phase synchrony between primary somatosensory (SI) and rIFC regions during a cued-attention tactile detection task that required suppression of response to uncertain distractor stimuli. Attentional modulation of synchrony between SI and rIFC was found in both the alpha and beta frequency bands. This synchrony manifested as an increase in the alpha-band early after cue between non-attended SI representations and rIFC, and as a subsequent increase in beta-band synchrony closer to stimulus processing. Differences in phase synchrony were not found in several proximal control regions. These results are the first to reveal distinct interactions between primary sensory cortex and rIFC in humans and suggest that synchrony between rIFC and primary sensory representations plays a role in the inhibition of irrelevant sensory stimuli and motor responses.National Institutes of Health (U.S.) (Grant P41RR14075)National Institutes of Health (U.S.) (Grant K25MH072941)National Institutes of Health (U.S.) (Grant K01AT003459)National Institutes of Health (U.S.) (Grant K24AT004095)National Institutes of Health (U.S.) (Grant RO1-NS045130-01)National Institutes of Health (U.S.) (Grant T32GM007484)National Science Foundation (U.S.) (Grant 0316933)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant DGE-1147470

    Rapid enhancement of touch from non-informative vision of the hand

    Get PDF
    Processing in one sensory modality may modulate processing in another. Here we investigate how simply viewing the hand can influence the sense of touch. Previous studies showed that non-informative vision of the hand enhances tactile acuity, relative to viewing an object at the same location. However, it remains unclear whether this Visual Enhancement of Touch (VET) involves a phasic enhancement of tactile processing circuits triggered by the visual event of seeing the hand, or more prolonged, tonic neuroplastic changes, such as recruitment of additional cortical areas for tactile processing. We recorded somatosensory evoked potentials (SEPs) evoked by electrical stimulation of the right middle finger, both before and shortly after viewing either the right hand, or a neutral object presented via a mirror. Crucially, and unlike prior studies, our visual exposures were unpredictable and brief, in addition to being non-informative about touch. Viewing the hand, as opposed to viewing an object, enhanced tactile spatial discrimination measured using grating orientation judgements, and also the P50 SEP component, which has been linked to early somatosensory cortical processing. This was a trial-specific, phasic effect, occurring within a few seconds of each visual onset, rather than an accumulating, tonic effect. Thus, somatosensory cortical modulation can be triggered even by a brief, non-informative glimpse of one’s hand. Such rapid multisensory modulation reveals novel aspects of the specialised brain systems for functionally representing the body
    • …
    corecore