176 research outputs found

    The optimization of force inputs for active structural acoustic control using a neural network

    Get PDF
    This paper investigates the use of a neural network to determine which force actuators, of a multi-actuator array, are best activated in order to achieve structural-acoustic control. The concept is demonstrated using a cylinder/cavity model on which the control forces, produced by piezoelectric actuators, are applied with the objective of reducing the interior noise. A two-layer neural network is employed and the back propagation solution is compared with the results calculated by a conventional, least-squares optimization analysis. The ability of the neural network to accurately and efficiently control actuator activation for interior noise reduction is demonstrated

    Application of pattern recognition techniques to the identification of aerospace acoustic sources

    Get PDF
    A pattern recognition system was developed that successfully recognizes simulated spectra of five different types of transportation noise sources. The system generates hyperplanes during a training stage to separate the classes and correctly classify unknown patterns in classification mode. A feature selector in the system reduces a large number of features to a smaller optimal set, maximizing performance and minimizing computation

    Decentralized Control of Sound Radiation from an Aircraft-Style Panel Using Iterative Loop Recovery

    Get PDF
    A decentralized LQG-based control strategy is designed to reduce low-frequency sound transmission through periodically stiffened panels. While modern control strategies have been used to reduce sound radiation from relatively simple structural acoustic systems, significant implementation issues have to be addressed before these control strategies can be extended to large systems such as the fuselage of an aircraft. For instance, centralized approaches typically require a high level of connectivity and are computationally intensive, while decentralized strategies face stability problems caused by the unmodeled interaction between neighboring control units. Since accurate uncertainty bounds are not known a priori, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is validated using real-time control experiments performed on a built-up aluminum test structure representative of the fuselage of an aircraft. Experiments demonstrate that the iterative approach is capable of achieving 12 dB peak reductions and a 3.6 dB integrated reduction in radiated sound power from the stiffened panel

    Decentralized Control of Sound Radiation Using Iterative Loop Recovery

    Get PDF
    A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units

    A High-Authority/Low-Authority Control Strategy for Coupled Aircraft-Style Bays

    Get PDF
    This paper presents a numerical investigation of an active structural acoustic control strategy for coupled aircraft-style bays. While structural coupling can destabilize or limit the performance of some model-based decentralized control systems, fullycoupled centralized control strategies are impractical for typical aircraft containing several hundred bays. An alternative is to use classical rate feedback with matched, collocated transducer pairs to achieve active damping. Unfortunately, due to the conservative nature of this strategy, stability is guaranteed at the expense of achievable noise reduction. Therefore, this paper describes the development of a combined control strategy using robust active damping in addition to a high-authority controller based on linear quadratic Gaussian (LQG) theory. The combined control system is evaluated on a tensioned, two-bay model using piezoceramic actuators and ideal point velocity sensors. Transducer placement on the two-bay structure is discussed, and the advantages of a combined control strategy are presented

    Real-Time Feedback Control of Flow-Induced Cavity Tones

    Get PDF
    A generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The control algorithm demonstrated multiple Rossiter-mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. Controller performance was evaluated with a measure of output disturbance rejection and an input sensitivity transfer function. The results suggest that disturbances entering the cavity flow are collocated with the control input at the cavity leading edge. In that case, only tonal components of the cavity wall-pressure fluctuations can be suppressed and arbitrary broadband pressure reduction is not possible with the present sensor/actuator arrangement. In the control-algorithm development, the cavity dynamics were treated as linear and time invariant (LTI) for a fixed Mach number. The experimental results lend support to that treatment

    Recent Enhancements to the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility

    Get PDF
    The Structural Acoustics Loads and Transmission (SALT) facility at the NASA Langley Research Center is comprised of an anechoic room and a reverberant room, and may act as a transmission loss suite when test articles are mounted in a window connecting the two rooms. In the latter configuration, the reverberant room acts as the noise source side and the anechoic room as the receiver side. The noise generation system used for qualification testing in the reverberant room was previously shown to achieve a maximum overall sound pressure level of 141 dB. This is considered to be marginally adequate for generating sound pressure levels typically required for launch vehicle payload qualification testing. Recent enhancements to the noise generation system increased the maximum overall sound pressure level to 154 dB, through the use of two airstream modulators coupled to 35 Hz and 160 Hz horns. This paper documents the acoustic performance of the enhanced noise generation system for a variety of relevant test spectra. Additionally, it demonstrates the capability of the SALT facility to conduct transmission loss and absorption testing in accordance with ASTM and ISO standards, respectively. A few examples of test capabilities are shown and include transmission loss testing of simple unstiffened and built up structures and measurement of the diffuse field absorption coefficient of a fibrous acoustic blanket

    Micropatchiness, turbulence and recruitment in plankton

    Get PDF
    A series of models are presented which examine the relative importance of microscale patchiness and turbulence to growth and recruitment in planktonic consumers. The analyses apply over scales from centimeters to meters (e.g. from copepods to fish larvae), and we assume food-limited conditions, since, otherwise, patchiness would not affect growth. A model of individual growth response to fluctuating food is developed which shows that growth is approximately exponential and is linearly related to food concentration. A random walk model reveals that the swimming process can be approximated as a simple diffusion term which, when included in the exponential growth model, leads to accumulation of consumers in high growth (=prey) areas. This diffusive migration of consumers up the prey gradient is rapid; for example, half- maximum growth is reached in \u3c2 hours for fish larvae swimming in a 10 m patch of copepod nauplii. Enhancement of the net growth by this process is substantial; larval fish growth rates increase by 25% when 10 m prey patches appear at 5 hour intervals and by \u3e100% for steady patches. Physical turbulence, at intermediate levels, causes patch dissipation and reduced growth, whereas, at higher levels, it causes growth to be restored to original, low-turbulence, values due to increased encounter velocities. Variations in population growth rate due to turbulence and micropatchiness, even when small (\u3c10%), can cause large fluctuations in recruitment by affecting duration of pre-recruit life

    Description and evaluation of an EBM curriculum using a block rotation

    Get PDF
    BACKGROUND: While previous authors have emphasized the importance of integrating and reinforcing evidence-based medicine (EBM) skills in residency, there are few published examples of such curricula. We designed an EBM curriculum to train family practice interns in essential EBM skills for information mastery using clinical questions generated by the family practice inpatient service. We sought to evaluate the impact of this curriculum on interns, residents, and faculty. METHODS: Interns (n = 13) were asked to self-assess their level of confidence in basic EBM skills before and after their 2-week EBM rotation. Residents (n = 21) and faculty (n = 12) were asked to assess how often the answers provided by the EBM intern to the inpatient service changed medical care. In addition, residents were asked to report how often they used their EBM skills and how often EBM concepts and tools were used in teaching by senior residents and faculty. Faculty were asked if the EBM curriculum had increased their use of EBM in practice and in teaching. RESULTS: Interns significantly increased their confidence over the course of the rotation. Residents and faculty felt that the answers provided by the EBM intern provided useful information and led to changes in patient care. Faculty reported incorporating EBM into their teaching (92%) and practice (75%). Residents reported applying the EBM skills they learned to patient care (86%) and that these skills were reinforced in the teaching they received outside of the rotation (81%). All residents and 11 of 12 faculty felt that the EBM curriculum had improved patient care. CONCLUSIONS: To our knowledge, this is the first published EBM curriculum using an individual block rotation format. As such, it may provide an alternative model for teaching and incorporating EBM into a residency program

    Increasing incidence and mortality of infective endocarditis: a population-based study through a record-linkage system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few population-based studies provide epidemiological data on infective endocarditis (IE). Aim of the study is to analyze incidence and outcomes of IE in the Veneto Region (North-Eastern Italy).</p> <p>Methods</p> <p>Residents with a first hospitalization for IE in 2000-2008 were extracted from discharge data and linked to mortality records to estimate 365-days survival. Etiology was retrieved in subsets of this cohort by discharge codes and by linkage to a microbiological database. Risk factors for mortality were assessed through logistic regression.</p> <p>Results</p> <p>1,863 subjects were hospitalized for IE, with a corresponding crude rate of 4.4 per 100,000 person-years, increasing from 4.1 in 2000-2002 to 4.9 in 2006-2008 (p = 0.003). Median age was 68 years; 39% of subjects were hospitalized in the three preceding months. 23% of patients underwent a cardiac valve procedure in the index admission or in the following year. Inhospital mortality was 14% (19% including hospital transfers); 90-days and 365-days mortality rose through the study years. Mortality increased with age and the Charlson comorbidity index, in subjects with previous hospitalizations for heart failure, and (in the subcohort with microbiological data) in IE due to Staphylococci (40% of IE).</p> <p>Conclusions</p> <p>The study demonstrates an increasing incidence and mortality for IE over the last decade. Analyses of electronic archives provide a region-wide picture of IE, overcoming referral biases affecting single clinic or multicentric studies, and therefore represent a first fundamental step to detect critical issues related to IE.</p
    • …
    corecore