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Abstract

A generalized predictive control (GPC) algorithm was formulated and applied to the
cavity flow-tone problem. The control algorithm demonstrated multiple Rossiter-
mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. Controller
performance was evaluated with a measure of output disturbance rejection and an
input sensitivity transfer function. The results suggest that disturbances entering
the cavity flow are collocated with the control input at the cavity leading edge.
In that case, only tonal components of the cavity wall-pressure fluctuations can
be suppressed and arbitrary broadband pressure reduction is not possible with the
present sensor/actuator arrangement. In the control-algorithm development, the
cavity dynamics were treated as linear and time invariant (LTI) for a fixed Mach
number. The experimental results lend support to that treatment.
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1 Introduction

The grazing flow over a cavity is characterized by an aeroacoustic feedback
process that leads to large-amplitude acoustic tones. This cavity flow-tone
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generation is of practical concern to several engineering applications ranging
from weapons bays and landing gear in aircraft to flow over ground vehicles. In
particular, the high sound pressure levels (∼ 160 dB) associated with weapons
bay tones can be damaging to stores within the bay and can influence the
trajectory of released stores [1]. The physics of cavity flows has been the source
of considerable study over the past four decades, and several review articles
on the problem are available in the literature [2–4]. The salient features of
the cavity-tone process are illustrated in Fig. 1 and are described as follows.
Instability waves in the turbulent free shear layer spanning the cavity grow and
convect downstream. The resulting unsteady impingement on the downstream
corner acts as a noise source. Sound from this source propagates upstream
to the cavity leading edge. Here, the feedback disturbances are converted to
instability waves through a receptivity process to complete the feedback loop.
Power spectra of unsteady pressures within the cavity often exhibit multiple
narrowband tones that result from the aeroacoustic feedback process described
above. These peaks are referred to a “Rossiter modes” after the author who
first studied the phenomenon [5].

Previous studies aimed at the suppression of cavity-flow tones have employed
passive and open-loop active flow-control methodologies. Feedback flow con-
trol, however, has only recently been applied to the problem [6–12]. An overview
of various feedback-control methodologies is given in the review paper by
Cattafesta et al. [13]. There are particular benefits to this approach over pas-
sive or open-loop control methods, such as reduced energy consumption [10],
no drag penalty, and robustness to parameter changes and modeling uncer-
tainties. For example, a feedback control algorithm can be made to adapt to
changes in process dynamics that are brought about by changes in freestream
conditions.

Aside from the practical interest, the cavity-flow problem is an excellent test
bed for real-time, closed-loop flow control. Here, real-time implies that the con-
trol effort is computed at the sample rate of a digital controller. Although the
geometry is relatively simple and only a small number of narrowband tones
are to be suppressed, the physics of the process is both rich and complex.
Specifically, the multiple Rossiter modes often experience significant nonlin-
ear coupling and mode switching [14–16], the dynamics of the process are
sensitive to freestream Mach number, and there are convective delays between
control inputs and sensor outputs. These physical elements are present in
many other active flow-control problems. It is expected therefore that control
algorithms and approaches developed for this problem will find broader appli-
cation. Most importantly, the required sensors, actuators, and digital signal
processing (DSP) hardware are mature enough to enable real-time feedback
control of flow-induced cavity tones.

The ultimate goal of the present research is self-tuning adaptive control of
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cavity tones. Adaptive control, in particular, is necessary for this problem since
the cavity-flow dynamics change as the freestream Mach number changes. The
elements of a self-tuning adaptive controller are shown in Fig. 2. There are two
distinct loops in this controller. The inner loop is a dynamic feedback control
system comprised of the process and controller. In this loop, the controller
operates at a sample rate that is suitable for the process under control. The
output of the process is unsteady pressures at the cavity walls. The reference
signal is set to zero since the control objective is to minimize the output.
The outer loop consists of the model estimation and controller design steps.
Model estimation refers to the identification of a model from process input-
output data. The identified process parameters and a specified cost function
are then used to design a controller that will minimize the output pressures. In
a fully adaptive controller, both steps are performed recursively at the sample
rate of the controller; i.e., in real time. If the process dynamics vary slowly,
however, the parameter identification and controller update can be performed
at a slower rate or possibly offline in a batch mode.

This article is the first of two parts that describe experiments aimed at the de-
velopment of a real-time adaptive controller for the cavity flow-tone problem.
As a first step to that end, the model identification and controller design steps
were performed offline in a batch mode. The cavity dynamics were assumed to
be linear and time invariant for any given fixed Mach number. The result was
a series of linear, fixed-gain control laws valid only for the freestream Mach
numbers at which they were designed. These control laws were then applied
to a cavity-flow test bed. Limitations in the control performance were identi-
fied and the suitability of the linearity and time-invariance assumptions was
examined. The key purpose of this first step was to identify whether the con-
trol methodology is sound, as it is the basis for a recursive controller design
algorithm.

The article is organized as follows. The control methodology and algorithm are
presented in the next section. This is followed by a description of the experi-
mental setup and data processing methods. Next, the primary characteristics
of the baseline cavity flow are presented. The results of the control exper-
iments are then presented and discussed. Finally, limitations in the control
performance are identified and discussed.

2 Control Methodology

In the feedback control of cavity-flow tones, the objective is to minimize the
output fluctuating pressure on the cavity walls. This is a disturbance rejec-
tion problem in controls terminology. The output pressures are provided by
a discrete number of transducers embedded in the cavity walls. These signals
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serve as both feedback signals and as performance measures for the controller.
To achieve the control objective, actuation is applied at the cavity leading
edge with the aim to cancel shear layer instability waves that result from the
aeroacoustic feedback loop. This effectively breaks the feedback loop, and re-
sults in a global reduction in the cavity-tone amplitudes. Cattafesta et al. [10]
and Williams et al. [6,7] previously demonstrated the potential for this control
approach to suppress cavity tones.

Actuation at the cavity leading edge is particularly advantageous since the flow
is most receptive at that point. Therefore, the required control-input ampli-
tude and energy requirements will be minimized. In previous feedback control
studies of cavity tones, two types of actuators were employed: mechanical vi-
bration of the cavity leading edge with a flap actuator [10,12] and zero-net
mass flux actuation through a spanwise slot at the leading edge [6,7,9]. The
two-dimensional nature of these input types is compatible with the character
of the instability waves being targeted for suppression. A piezoelectric flap-
type actuator was used in the current study.

2.1 System Identification

In many control-design approaches, a mathematical model of the process must
be available for controller design. While a physics-based model is desirable,
none of sufficient accuracy is currently available. Instead, an empirical model,
whose parameters are determined from input-output data, can be used. Cal-
culation of the parameters is referred to as system identification.

Recently, Rowley et al. [31,32] suggested that cavity oscillations can be char-
acterized as either self-sustained or forced. In the self-sustained regime, the
cavity flow is linearly unstable with tone amplitudes limited by nonlinear sat-
uration of instabilities in the cavity shear layer. In the forced regime, the
oscillations result from the amplification of external disturbances (e.g., tur-
bulent boundary-layer fluctuations). In effect, the cavity flow behaves as a
linearly stable, lightly-damped system that amplifies disturbances at certain
resonant frequencies. The character of the oscillations dictates the experimen-
tal approach to identifying the model parameters. For example, if they are
self-sustained, the system must be stabilized prior to data collection for sys-
tem identification. That approach was used by Williams et al. [33] and Rowley
et al. [31] to identify and control a cavity flow in the self-sustained regime.
Otherwise, system identification can be used to identify the parameters for a
model of the open loop cavity dynamics.

It will be shown in the results section that the cavity-flow oscillations for the
present study can be characterized as the forced response of a lightly-damped
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system. Therefore, the model structure chosen to represent the open loop
cavity-flow dynamics was a discrete-time linear model given by:

y(k) = α1y(k − 1) + . . . + αpy(k − p) + β0u(k) + . . . + βpu(k − p), (1)

where y(k) are the m×1 outputs, u(k) are the r×1 inputs, p is the model order,
and k is the current time step. This model structure is commonly referred to
as an ARX (auto-regressive, exogenous input) model [18,19]. The coefficient
matrices, αi (i = 1, 2, . . . , p) of m×m and βi (i = 0, 1, 2, . . . , p) of m× r, are
the ARX parameters or the observer Markov parameters.

To determine the observer Markov parameters of the model, the observer/Kalman
filter identification (OKID) algorithm of Juang et al. [18,21,22] was used. The
OKID algorithm identifies plant parameters from experimental input-output
data from the open-loop plant. To obtain this data, the actuator was driven
with a broadband signal and input-output time-series data were collected.
Models were identified for each of the flow conditions considered in the con-
trol experiments.

2.2 Generalized Predictive Control (GPC)

There are several control-design methods that can be used to meet the present
control objective. The particular control law used in this study was the gen-
eralized predictive controller (GPC). The GPC algorithm is based on system
output predictions over a finite time horizon. Using these predictions, an ap-
propriate cost function for the problem is then defined and subsequently min-
imized to determine the control law. The GPC was first introduced by Clarke
et al. [23,24] and has since been successfully applied to many active vibration
and noise control problems. It is applicable to plants that are non-minimum
phase, plants that are open-loop unstable or have lightly-damped poles, and
plants that have delays. Since the cavity-flow dynamics exhibit several of these
features, the GPC was considered to be a good candidate for the problem.

A predictive matrix equation that provides future system output predictions
can be formed from the ARX model in Eq. 1 [21,22,25,26]:

ys(k) = Tus(k) + Θvp(k − p), (2)
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where ys(k) is an sm× 1 vector of current and future outputs:

ys(k) =



y(k)

y(k + 1)
...

y(k + s− 1)


, (3)

us(k) is an sr × 1 vector of current and future inputs:

us(k) =



u(k)

u(k + 1)
...

u(k + s− 1)


, (4)

and vp(k−p) is a p(m+r)×1 vector of past inputs and outputs running from
time step k − p to k − 1:

vp(k − p) =



u(k − p)
...

u(k − 1)

y(k − p)
...

y(k − 1)



. (5)

The parameter s is referred to as the prediction horizon. The predictive matrix
equation states that the future output data depends on the future control
inputs and past input-output data. The matrix T is an sm × sr Toeplitz
matrix:

T =



β0

β
(1)
0 β0

β
(2)
0 β

(1)
0 β0

...
...

. . . . . .

β
(s−1)
0 β

(s−2)
0 · · · β

(1)
0 β0


(6)
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where β0, β
(1)
0 , · · · , β

(s−1)
0 are the pulse response parameters of the open loop

plant. These parameters can be obtained from the observer Markov parameters
[21]. The rectangular matrix Θ is formed with a set of recursive equations and
the ARX parameters [21].

Since the present control objective is disturbance rejection at the system out-
put, the appropriate cost function for the GPC algorithm is given by:

J = yT
s (k)Qys(k) + uT

s (k)λus(k). (7)

The first term in Eq. 7 is the sum of the weighted, squared output values over
the prediction horizon and Q is an sm× sm block-diagonal matrix of sensor
weights:

Q =


Q1 0 0

0
. . . 0

0 0 Qs

 (8)

where Qi is an m×m diagonal matrix of sensor weights:

Qi = diag (q1, q2, · · · , qm) . (9)

The sensor weights q1, · · · , qm take on values between 0 and 1. A value of zero
means that the sensor is not included in the cost function, but the sensor
information will still be used by the feedback controller. The second term in
the cost function imposes an effort penalty on the control inputs and λ is a
positive scalar value. This term is necessary to avoid large control inputs and
actuator saturation. It also affects the closed loop system stability.

To determine the control law, the cost function is minimized with respect to
the control input. Substituting Eq. 2 into Eq. 7 and minimizing the result with
respect to us gives:

us(k) = −
[
TTQT + λI

]−1
TTQΘvp(k − p), (10)

where I is an sr×sr identity matrix. This control law yields a vector of current
and future control inputs. In the real-time implementation of this control law,
however, the current control effort, u(k), is applied to the system and the
future values are discarded at each time step. Therefore, it is sufficient to
compute the current control input as:

u(k) =
{
−

[
TTQT + λI

]−1
TTQ

}
r
Θvp(k − p), (11)
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where the subscript r denotes the first r rows of the matrix in brackets. Recall
that the cavity dynamics are assumed to be time invariant for a given fixed
Mach number. The matrix premultiplying vp(k − p) in Eq. 11 can then be
evaluated offline using the identified ARX parameters for each of the test
Mach numbers. With this approach, a series of fixed-gain control laws, valid
only for the Mach numbers at which they were designed, is obtained.

There are several parameters in the GPC algorithm that must be tuned to
achieve a balance between optimal performance and stability of the controller:
the model order p, the prediction horizon s, the control effort penalty λ, and
the sampling rate. Although the parameter values are problem dependent,
experience provides some guidelines for their selection. The model order is
selected through system identification. The key issue in this case is to chose p
large enough such that all of the pertinent open-loop dynamics are captured
by the model. The prediction horizon should be at least equal to the model
order, but in practice, is typically taken as 2 to 3 times the model order [25].
The optimal value for the control effort penalty must be determined through
on-line testing. Small values of λ result in an aggressive controller while large
values result in a more sluggish controller. If the system to be controlled is
non-minimum phase, the controller will be unstable when λ = 0 [22]. For
the sampling rate, experience indicates that a value 2 to 3 times the highest
frequency results in the best performance [25].

3 Experimental Details

The experiments were conducted at NASA-Langley Research Center in the
Probe Calibration Tunnel (PCT). The PCT is typically operated as an open-
jet pressure tunnel with independent control over stagnation pressure, stag-
nation temperature, and freestream velocity. For the current experiments, the
facility was fitted with a subsonic nozzle that contracts from a 304.8 mm circu-
lar inlet to a 50.8 mm by 152.4 mm exit. A straight duct section of length 0.6
m was attached to the nozzle exit and was terminated with a small-angle dif-
fuser. The freestream Mach number range for the present tunnel configuration
was 0.04 to 0.8.

A rectangular cavity model was installed in the ceiling of the straight duct
section of the PCT. The floor of the duct section was a foam filled baffle that
minimized reflections of acoustic waves radiated by the cavity. The cavity
model had a fixed length, ` = 152.4 mm, and a variable depth, d, that was
fixed at 30.48 mm to give an `/d ratio of 5. The cavity model spanned the
width of the test section (w = 50.89 mm) to provide an un-obscured view of
the cavity shear layer for optical diagnostics. The incoming boundary layer
was turbulent with a thickness of δ ≈ 6 mm. A schematic of the cavity model
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is shown in Fig. 3.

The cavity model was instrumented with a pair of piezoresistive pressure trans-
ducers. The nominal sensitivity and bandwidth of the sensors were 2.2× 10−5

V/Pa and 14 kHz, respectively. One sensor was located in the midplane of
the front cavity wall, 12 mm down from the cavity leading edge. The second
sensor was located in the floor midplane, 15 mm upstream from the cavity
rear wall (see Fig. 3).

The actuator for the present study was a piezoelectric bimorph cantilever beam
with its tip situated at the cavity leading edge (Fig. 3). In this orientation,
the actuator tip moves normal to the main flow direction. This actuator was
chosen for its relatively high bandwidth (∼ 1 kHz) and ability to generate
large streamwise disturbances with modest tip deflections (on the order of
tens of micrometers [8,27]). The measured frequency response function of the
actuator, from input voltage to output tip deflection, is shown in Fig. 4. As
observed in the figure, the actuator response is characteristic of a 2nd-order
under-damped system with a natural frequency of ≈ 1200 Hz and a DC gain of
≈ 0.25 µm/V. Further details on the design and construction of the actuator
can be found in Kegerise et al. [8], Mathew [28] and Schaeffler et al. [29]

Details of the hardware setup for the feedback control experiments are shown
in Fig. 5. The voltage signals from the cavity pressure sensors were first pre-
amplified and anti-alias filtered with 6th-order time delay filters. These filters
were chosen for their constant group delay (0.715/Fc seconds) in the passband.
The cutoff frequency of the filters was set to Fc = 1600 Hz. Next, the signals
were sampled with a 16-bit A/D.

The control algorithm was coded to run on a floating-point DSP with a clock
speed of 480 MHz. Based on the current and past sampled voltages from the
pressure sensors and past control efforts, the control algorithm computed the
control signal once per time step. For all of the results presented in this article,
the sample time of controller was set to 250 µs.

The computed control effort was converted to an analog signal via a 14-bit
D/A card. This signal was passed to a reconstruction filter (same type as the
anti-alias filter with Fc = 1600 Hz) to smooth the zero-order hold signal from
the D/A card. The output of this filter was sent to a high-voltage amplifier to
produce the drive signal for the bimorph actuator.

Pressure sensor time-series data were collected for both the baseline (open-
loop) and the controlled cavity flow. Primarily, these data were processed to
obtain pressure spectra. In computing the spectra, 1024 point FFTs, a hanning
window, 50% overlap, and 160 block averages were used. The sample rate for
data collection was 4 kHz and the frequency resolution of the spectra was 3.9
Hz. The pressure spectra are presented in the results section as dB re 2.0×10−5
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Pa.

4 Results and Discussion

4.1 Baseline Cavity Flow

The baseline (control off, open loop) cavity flow was first evaluated. To that
end, unsteady pressure time series were acquired for a range of freestream
Mach numbers (M∞ = 0.1 to 0.6). The total pressure and total temperature
were held constant at 138 kPa and 297 K, respectively, during the acqui-
sition. The spectra of the unsteady pressures were calculated and peaks in
the pressure spectra that correspond to Rossiter modes were identified. The
frequencies of these peaks were then compared to those obtained from the
modified Rossiter equation [30]:

St∞ =
m− α

M∞
(
1 + γ−1

2
M2
∞

)−1/2
+ 1/κ

, (12)

where St∞ = f`/U∞ is the Strouhal number, m (= 1, 2, 3, . . .) is the mode
number, and α = 0.25 and κ = 0.66 are empirical constants. The measured
and calculated Rossiter-mode frequencies for m = 1 to 5 are shown in Fig. 6.
The agreement between the measured frequencies and those calculated via
Eq. 12 was within 10%, verifying that the present cavity model behaves as
expected.

Three test Mach numbers were chosen for feedback control: M∞ = 0.275, 0.32,
and 0.38. The baseline pressure spectra of the rear-floor sensor for these Mach
numbers is presented in Fig. 7. The characteristic multiple resonant tones
that increase in frequency with increasing Mach number are evident. The tone
amplitudes and broadband levels are also seen to increase with increasing Mach
number. Note that all cavity tones for each case are within the bandwidth of
the present actuator. Table 1 presents the measured and calculated frequencies
of the first four Rossiter modes for each test condition. The good agreement
between them (within 10%) establishes the quality of the testbed for feedback
control experiments.

In the present control methodology, system identification is used to identify
the parameters for a model of the open loop cavity-flow dynamics. As stated
earlier, this approach is valid when the cavity oscillations can be characterized
as forced, linearly stable. If the system was unstable, however, the cavity os-
cillations would have to be stabilized before performing system identification.
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The probability density functions (PDF) of the cavity pressure signals can
be used to determine which regime (forced, linearly stable or self-sustained,
linearly unstable) characterizes the cavity oscillations [31]. For example, if the
input disturbances have a Gaussian distribution, the PDF of a linearly stable
system will also be Gaussian. The PDFs of the baseline rear-floor pressure
for the three test Mach numbers are shown in Fig. 8. Within the uncertainty
of the estimate, the PDFs of the pressures are observed to be Gaussian. The
same statement applies to the pressures at the front-wall sensor. The cav-
ity oscillations may therefore be characterized as forced, linearly stable, and
system identification may be applied to the open-loop system.

4.2 Control Results

Using the identified models for the cavity dynamics, controllers were designed
for each of the test Mach numbers using Eq. 11. These control laws were then
implemented on the real-time DSP hardware. Initially, large values for the
control effort penalty, λ, were used in control design and testing. Subsequent
designs used progressively smaller values of λ to move towards more aggressive
controllers. Controller performance was evaluated through a comparison of the
baseline and controlled wall-pressure spectra. The optimal value of λ gave the
best performance (i.e., maximum tone suppression) while maintaining stability
and avoiding actuator saturation.

The GPC algorithm parameters giving the best performance for the three test
Mach numbers are shown in Table 2. For all cases, the model order used in
system identification was 80 and the prediction horizon was set to 240 (s = 3p).
The sensor weights for the two output sensors were zero for the front-wall
sensor (q1) and one for the rear-floor sensor (q2). The control performance
was found to be weakly dependent on the sensor weights, and only subtle
differences were observed with different values of sensor weightings.

Figures 9a, 10a, and 11a present the baseline and controlled pressure spectra
at the rear-floor sensor for the Mach numbers and control parameters listed
in Table 2. Multiple Rossiter modes were suppressed by the control algorithm
for all three conditions. For the M∞ = 0.275 case in particular, the first four
Rossiter modes exhibit some suppression. The dominant Rossiter mode, i.e.,
the tone with maximum spectral amplitude, is suppressed by approximately
10 dB in each test case. The broadband levels of the pressure fluctuations are
not significantly altered in any of the control runs. It is of interest to note
that the same statements can be made in reference to the pressure spectra
at the front-wall sensor. This implies that feedback control produces a global
reduction in the cavity-tone amplitudes; a result that is expected in light of
the present control approach.
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4.2.1 Control Performance Limitations

In previous feedback control studies of cavity-flow tones, several performance
limitations were noted. Specifically, the controllers excited new tones or side
bands of the Rossiter modes [31,9]. The latter phenomenon is referred to as
peak splitting. None of the previous studies reported significant reductions in
the broadband pressure fluctuations. In the present control experiments, the
excitation of new tones was not observed. While the pressure spectra do not
indicate distinct peak splitting, a close examination of the controlled pres-
sure spectra reveals increased energy in frequency bands around the Rossiter
modes. This behavior, which is common in the feedback control of sound and
vibration, is referred to as spillover. It follows from the definition of Hong
and Bernstein [34] which states that spillover occurs at frequency f when the
closed-loop transfer-function magnitude is greater than the open-loop transfer
function magnitude at that frequency. The result is disturbance amplification
in the output sensors.

A performance measure can be defined to better represent the spillover ob-
served in the control results:

‖ycl(f)‖2

‖yol(f)‖2

, (13)

where ycl and yol are vectors of the output sensor spectra for the controlled
and baseline cases, respectively, and ‖·‖2 is the 2-norm. Eq. 13 essentially pro-
vides a scalar measure of disturbance rejection for the multiple output sensors.
A value less than one indicates disturbance attenuation, while a value greater
then one indicates disturbance amplification. The performance measure was
calculated for each of the control cases and the results are indicated by the
dashed lines in Figs. 9b, 10b, and 11b. As expected, the performance measure
is less than one (negative log magnitude) at the Rossiter modes where atten-
uation has occured, but this is always accompanied by amplification (positive
log magnitude) in sideband frequencies.

To understand why spillover arises in the feedback control results, the defi-
nition of a sensitivity transfer function is useful. The sensitivity was recently
used by Rowley et al. [31] to explain performance limitations in the feedback
control of cavity tones. Towards that end, consider the single-input/multiple-
output (SIMO) model for the cavity-flow control system shown in Fig. 12. The
thicker lines indicate multidimensional signals, while the thinner lines indicate
scalar signals. The disturbance, w(t), is hypothesized to enter the system at
the cavity leading edge, where the shear layer is especially receptive to in-
puts. The disturbance is subsequently filtered by the cavity dynamics before
reaching the output sensors. In the absence of feedback control, this distur-
bance drives the response in the output sensors. This viewpoint is consistent
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with the hypothesis that cavity-flow tones result from the forced response of
a lightly-damped system.

The control input is hypothesized to follow the same path to the output sensors
as the disturbance, as indicated in Fig. 12. With this hypothesis, anything the
controller does to reject the disturbance will be reflected equally in all output
sensors.

The input sensitivity for this SIMO system can be used to verify this hy-
pothesis. The input sensitivity represents the transfer function between the
disturbance, w(t), and the plant input, v(t), and is written as:

Si =
1

1−HP
, (14)

where P = GGa is the plant transfer function and H is the controller transfer
function. For a SIMO system with a single disturbance following the same path
to the error sensors as the control input, the input sensitivity can be shown
to be equal to the performance measure defined in Eq. 13. The mathematical
details of this equality are presented in the appendix. If the disturbance follows
another path or if there are multiple disturbance paths to the output sensors,
then this will not be true.

The log magnitude of the input sensitivity (20 log (|Si|)) is indicated by the
solid line in Figs. 9b, 10b, and 11b. The good agreement between the input
sensitivity and the measured performance for the M∞ = 0.275 case supports
the above hypothesis that the disturbance enters the system at the input.
As the Mach number is increased, however, the differences between them in-
crease. These differences can arise from uncertainties in the plant model used
to calculate Si and other disturbances that follow a different path to the out-
put sensors. Nevertheless, for the Mach number range tested, the disturbance
appears to follow the same path through the plant as the control input.

Recall that the input sensitivity was defined to aid in understanding the origins
of spillover. Since the control objective is disturbance rejection, it is desired
that |Si| < 1 (negative log magnitude) over all frequencies. However, the Bode
integral constraint places certain requirements on the sensitivity. Specifically,
for a discrete data system with an asymptotically stable open-loop transfer
function, HP, the Bode integral constraint is [35]:

π∫
0

log
(
|Si

(
ejω

)
|
)
dω = 0. (15)

The immediate consequence of Eq. 15 is negative values of the log sensitivity
in one frequency band must necessarily be balanced by positive values in
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another frequency band. The result is spillover and the current performance
data clearly reflect this integral constraint.

If spillover is unavoidable, then the best approach is to seek a control design
the minimizes the input sensitivity at the cavity tone frequencies and balances
this with |Si| slightly larger than one over a wide band of frequencies. There
are, however, practical limits to approach. First, the actuators used in cavity
control do not have sufficient authority over a wide frequency range. Second,
the frequency band over which the sensitivity can be balanced is limited in a
digital controller by the Nyquist frequency.

Instead, it is important to consider whether the constraints imposed by the
Bode integral can be overcome and therefore achieve arbitrary levels of broad-
band pressure reduction. Hong and Bernstein [34] have shown that there are
specific conditions under which a zero-spillover controller can be designed.
One condition is that the disturbance and the control input be noncollocated.
If they are collocated, then spillover is unavoidable. Since the present per-
formance data suggest that the disturbance and control input are indeed
collocated, spillover cannot be avoided. This is unfortunate since, from the
standpoint of minimal control input energy, the cavity leading edge is an ideal
place for actuation. From a controls perspective, however, it does not appear
to be an optimal place to achieve broadband disturbance rejection.

4.2.2 Linearity and Time-Invariance Assumptions

In the control design, it was assumed that the cavity dynamics is linear and
time invariant for a fixed Mach number. The PDF data presented earlier in
this section lend support to the linear treatment. That data suggests that the
overall cavity dynamics is characteristic of a forced, linearly-stable system; not
limit cycle oscillations of an unstable system. Further support for the control-
design assumptions is provided by the agreement between the measured con-
trol performance and the input sensitivity function that is based on a linear,
time-invariant model of the cavity dynamics. Finally, the time-invariance of
the cavity dynamics at a given Mach number was examined through repeated
controller design and application over several hours of testing. For each Mach
number considered in the tests, the controller yielded the same level of control
performance.

If the Mach number varies, however, the assumption of time invariance no
longer holds. To see this, consider the data plotted in Fig. 13. In the plot, the
baseline pressure spectra of the rear-floor sensor at M∞ = 0.29 is presented.
Also plotted in the figure is a controlled pressure spectra of the rear-floor sensor
at the same Mach number. That data was generated by applying the controller
designed at M∞ = 0.275 to the cavity flow at M∞ = 0.29. Although the Mach
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number has changed by only ∼ 9% from the design condition, the cavity
dynamics has changed enough to degrade the control performance, as indicated
by the increased energy in Rossiter-mode sidebands. This underscores the
need for an adaptive controller that can track changes in the system dynamics
with varying Mach number. The development and application of an adaptive
controller for the cavity problem will be presented in a companion article.

5 Conclusions

In this article, the real-time feedback control of cavity flow-tones was pre-
sented. Generalized predictive control laws were developed offline in a batch
mode. A key assumption in this approach was that the cavity dynamics was
linear and time invariant for any given fixed Mach number. The resulting series
of linear fixed-gain control laws, valid only for the Mach numbers at which they
were designed, was then applied to an experimental cavity flow test bed. The
controllers achieved multiple Rossiter-mode suppression at fixed Mach num-
bers ranging from 0.275 to 0.38. Furthermore, the suppression is a global effect
since all pressure sensors within the cavity experienced similar reductions in
cavity-tone amplitudes.

Limitations in controller performance were examined through the use of an
input sensitivity transfer function. The close agreement between the input
sensitivity and a measure of output disturbance rejection suggests that the
primary disturbance path is through the plant (cavity dynamics) from the
input (cavity leading edge). This, in turn, suggests collocation of the con-
trol input and disturbance and therefore, arbitrary reduction of broadband
unsteady cavity pressures is not possible with the present arrangement of sen-
sors and actuator. Instead, spillover will occur at frequencies away from the
Rossiter modes.

Alternative placements of actuators and sensors may overcome this perfor-
mance limitation. One possible arrangement would utilize actuation at both
the leading and trailing edges of the cavity. Measurements sensors in the cav-
ity shear layer may also be useful since then, a disturbance signal that is time
advanced from actuation at the trailing edge would be available. This feed-
forward type of arrangement may greatly enhance the control performance,
particularly in regard to broadband disturbance rejection.

In the development of the GPC control laws, the cavity dynamics was treated
as linear and time invariant (LTI) at a fixed Mach number. In view of the
experimental control results, this appears to be a reasonable treatment of the
problem. The control laws developed in this article, however, are valid only for
the given Mach numbers at which they were designed. Small changes in Mach
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number lead to changes in the cavity dynamics and that, in turn, leads to a
degradation in control performance if a fixed-gain controller is used. Instead,
the controller coefficients must be made to adapt to changing cavity dynamics.
The control methodology presented in this article provides the framework for
an adaptive controller. In the companion paper, an adaptive GPC algorithm
is developed and the results of its application to the cavity flow test bed will
be presented.

6 Appendix

In this section, the performance measure defined in Eq. 13 is shown to be
equal to the input sensitivity for the SIMO model shown in Fig. 12. To that
end, an expression for the closed-loop response of the SIMO system must first
be formed. The cavity flow is considered to be a single-input/multiple-output
system described by:

y(f) = G(f)v(f), (16)

where G(f) is an m×1 frequency response function matrix of the cavity flow.
The controller is a multiple-input/single-output system described by:

u(f) = H(f)y(f) (17)

where H(f) is a 1 × m frequency response function matrix of the controller.
The input to the cavity flow is given by:

v(f) = w(f) + Ga(f)u(f). (18)

Substituting Eqs. 17 and 18 into Eq. 16 yields:

y = Gw + GGaHy, (19)

where the dependence on frequency, f , is understood. Solving this expression
for y gives the closed-loop response:

y = [I−GGaH]−1 Gw. (20)

Using the matrix inversion lemma:

[A + BCD]−1 = A−1 −A−1B
[
C−1 + DA−1B

]−1
DA−1, (21)
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the matrix inverse in Eq. 20 can be written as:

I + G
(

1

Ga

−HG
)−1

H (22)

or

I +
GGaH

1−HGGa

. (23)

Substituting this expression into Eq. 20 gives:

y =
G−HGGaG + GGaHG

1−HGGa

w. (24)

Since HG and Ga are scalar transfer functions, Eq. 24 can be rewritten as:

y =
G−GGaHG + GGaHG

1−HGGa

w (25)

and therefore,

y =
G

1−HGGa

w. (26)

The input sensitivity for the SIMO system is given by:

Si =
1

1−HGGa

(27)

Using this definition, the closed-loop response for the model system can be
written as:

ycl = SiGw. (28)

where the subscript was added to denote the closed-loop response.

In the absence of feedback control, the open-loop response of the cavity flow
is described by:

yol = Gw. (29)

17



Recall the performance measure defined earlier:

‖ycl(f)‖2

‖yol(f)‖2

=

√
yT

clycl√
yT

olyol

. (30)

Substituting Eqs. 28 and 29 into 30 gives:

‖ycl(f)‖2

‖yol(f)‖2

=

√
GTG√
GTG

Si = Si. (31)

Therefore, for this special case of a single control input, a single disturbance
input, and multiple output sensors, the input sensitivity is equal to the per-
formance measure.
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