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Micropatchiness, turbulence and recruitment in plankton

by Cabell S. Davis" Glenn R. Flierl/ P. H. Wiebel

and P. J. S. Franksl

ABSTRACT
A series of models are presented which examine the relative importance of microscale

patchiness and turbulence to growth and recruitment in planktonic consumers. The analyses
apply over scales from centimeters to meters (e.g. from copepods to fish larvae), and we
assume food-limited conditions, since, otherwise, patchiness would not affect growth. A model
of individual growth response to fluctuating food is developed which shows that growth is
approximately exponential and is linearly related to food concentration. A random walk model
reveals that the swimming process can be approximated as a simple diffusion term which, when
included in the exponential growth model, leads to accumulation of consumers in high growth
(=prey) areas. This diffusive migration of consumers up the prey gradient is rapid; for
example, half- maximum growth is reached in < 2 hours for fish larvae swimming in a 10 m
patch of copepod nauplii. Enhancement of the net growth by this process is substantial; larval
fish growth rates increase by 25% when 10 m prey patches appear at 5 hour intervals and by
> 100% for steady patches. Physical turbulence, at intermediate levels, causes patch dissipa-
tion and reduced growth, whereas, at higher levels, it causes growth to be restored to original,
low-turbulence, values due to increased encounter velocities. Variations in population growth
rate due to turbulence and micropatchiness, even when small « 10%), can cause large
fluctuations in recruitment by affecting duration of pre-recruit life.

1. Introduction

Pelagic marine ecosystem dynamics are the integrated result of myriad interac-
tions occurring between individual organisms. The nature of this integration defines
the time and space scales which are most important in driving system level processes.
At present, little has been done to determine the potential significance of individual
interactions to higher levels of organization, and there is confusion over which scales
are most relevant, e.g., whether the scale of the individual is important in determin-
ing system level response to large scale physical forcings (Marine Zooplankton
Colloquium, 1989). Understanding the process of integration from small to large
scales requires knowledge of microscale ( < 10 m) distributions and behaviors and
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how these interact to control population and ecosystem dynamics. In particular, it is
essential to know the extent to which microscale patchiness exists in the ocean and
whether such aggregations are of any consequence to population growth and
survival.

At present, models which predict population growth and distribution of marine
zooplankton species rely on estimates of individual growth and reproductive rates
derived from laboratory cultures. These same laboratory studies, however, have
shown that food concentrations required for maximal growth and reproduction are
often well above food levels found in the sea as determined with present sampling
gear (eg. Reeve, 1980), suggesting that field animals may feed in micropatches too
small to be sampled with traditinal gear and that such patches are of great
importance in growth and recruitment of planktonic organisms (Lasker and Zweifel,
1978; Rothschild and Rooth, 1982). Workshops on ecology of fish larvae and
zooplankton have repeatedly pointed out that the micro-fine scale environment is of
critical importance to planktonic growth and survival (Fish Ecology III, Rothschild
and Rooth, 1982; GLOBEC, 1988; Marine Zooplankton Colloquium, 1989).

Direct sampling of plankton distributions on scales < 10 m is limited to the work of
Owen (1981,1989). Using a towed Nisken array, he found a large degree of
contagion on scales <3 meters both horizontally and vertically. Microscate patchi-
ness was found in a variety of environments under various wind conditions, patch
amplitude and scale being inversely related to wind velocity. Sampling devices such
as the LHPR (Haury and Wiebe, 1982), Batfish (Denman and Herman, 1978), and
plankton pumps (Miller and Judkins, 1981) have poor resolution at scales < 10 m
due to spatial smearing problems, yet patchiness on large scales (10's of meters) is
commonly found with these instruments suggesting that smaller scale patterns may
be equally widespread. [Patchiness on still larger scales (hundreds of meters to a few
kilometers), is, of course, well documented from closely spaced net tows, e.g.
Sameoto (1978), Mackas and Anderson (1986)]. High frequency acoustical sampling
also provides indirect evidence that zooplankton are heterogeneously distributed on
the microscale (Pieper and Holliday, 1984). Methods of statistical analysis and some
potential causes of small scale patchiness were reviewed in Fasham (1978) who
pointed to the need for general theoretical models of patchiness. Despite empirical
evidence and heuristic arguments for the existence and importance of microscale
patchiness of plankton, little has been done to establish the theoretical framework in
which organismallevel processes translate to the population.

A primary factor controlling growth rate in plankton is the rate of encounter
between consumer and prey. A recent analysis of the effects of turbulence on
encounter rates shows clearly that the turbulent component of encounter velocity
must be included in models of predator-prey interactions (Rothschild and Osborn,
1988). Encounter rates are much higher when this physical component is included as
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opposed to only the swimming velocities of predator and prey (Gerrittsen and
Strickler, 1977).

Although turbulence increases encounter velocity, it may at the same time reduce
encounter rate due to dispersion of any existing predator-prey patches. Thus physical
turbulence such as wind-induced mixing has a twofold effect: in a homogeneous
environment, it will increase encounter rates, as shown by Rothschild and Osborn
(1988), while, in a patchy environment, turbulent dissipation will reduce the rate to
some unknown degree.

Given these considerations, we asked the following three questions: (1) Can
microscale aggregations of predator and prey affect growth rate of planktonic
populations? (2) Does turbulence increase or decrease growth rate? and (3) Are
these changes in growth rate large enough to affect survival and recruitment?

The objective of this paper is to present results from a series of theoretical models,
both analytical and numerical, which show that microscale patchiness can enhance
planktonic growth rates, that turbulence, depending on its strength, will either
enhance or reduce growth rates, and that even slight variations in growth rate cause
large fluctuations in recruitment. The first model (Section 2) we develop describes
the detailed dynamics of the growth of a single organism as it encounters prey. The
prey are encountered randomly at a specified mean rate (to be determined in later
sections as a function of the prey concentration, the swimming motion of the
predator, and the turbulence). Components of the growth dynamics include inges-
tion, egestion, assimilation, respiration and excretion. The model predicts gut
fullness and body weight through time. We show that growth is effectively exponen-
tial and is linearly related to food concentration so that patchy food supply leads to
patchy growth rates. Comparison of the detailed model in the presence of fluctuating
food supply to the exponential model gives reasonable agreement. Thus Section 2
gives a solid basis for subsequent use of the simple exponential growth model.

We then explore the role of swimming and patchy food supply on the growth of a
predator. From a random walk model, we derive an appropriate form of a diffusion
term and combine this with the variable growth model derived in Section 2.
Enhancement of growth can be substantial when the patches of food persist long
enough that the predators are able to swim into them; e.g., for 1 cm fish larvae
swimming in a field of 10 m patches of nauplii which persist for only a few hours, we
find a 25% enhancement to population growth. In Section 4, a general analysis of the
growth/swimming equation shows the dependence upon the parameters and the
patch structure. The enhancement to growth could be determined if the space-time
spectrum of the prey were known. In subsequent examples, however, we consider
only selected wavelengths and frequencies.

The effects of turbulence on the encounter rate and therefore the growth are
discussed in Section 5. From this analysis, the growth enhancement, both from the
swimming discussed previously and from the more frequent encounters associated
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with the physical motions, can be compared to the dissipation of patchiness by the
turbulent diffusion. At low levels of turbulence, growth rates are high because prey
patches disperse slowly, and predators swim into these patches and feed at elevated
rates. At intermediate levels, prey patches are dispersed rapidly and growth rate is
reduced. At high levels, growth rate increases again, because turbulence enhances
the encounter rate even though prey concentrations become homogeneous.

Finally, in Section 6, we analyze the relationship between growth rate, survival
rate, and recruitment. Small changes in growth rates can cause large deviations in
recruitment. Such growth changes are as significant to recruitment as are equivalent
changes in mortality rate. The analyses presented in the paper apply over scales from
centimeters to meters (eg. from copepods to fish larvae), and we assume food-limited
conditions, since, otherwise, patchiness would not affect growth.

2. Individual growth model

To examine the degree to which an organism can buffer the effects of a patchy food
environment we develop a generic mass transport model of growth and then derive
parameter values using the copepod Calanus pacificus as an example. We develop
this model from the components of growth to show that, under food limiting
conditions, growth rate is directly proportional to food concentration and is approxi-
mately exponential over time scales relevant to micro-scale patchiness. Subsequent
models use the simple exponential approximation. While it is necessary to justify this
simplification by developing the full growth model, an understanding of the latter is
not essential to our analyses in subsequent sections of the interactions between
swimming, patchiness, and turbulence.

a. Organismal model. In this section, we construct a model for the response of a
consumer to a source of food. We focus on individual encounters with prey organisms
and the probability of ingestion given the amount of food in the gut and the body
mass of the consumer.

We consider the flow of food energy (or mass) through a predator (or herbivore)
(Fig. 1); the terms in boxes represent the amount of mass in the gut (G), in body
tissue (T), in storage (S), and in a labile fraction (L), while the rest of the symbols
represent rates of mass flow between various compartments (see Appendix). A food
source F (mass per unit time "arriving" at the predator) is ingested I into the gut G
and is assimilated A into a labile fraction Lor egested Eg. The labile fraction is lost to
respiration and excretion RE with any excess put into storage S and/or body tissues T.
The standard definition of growth rate (change in body weight with time, Dw/Dt)
includes both changes in body tissue T (i.e., tissue growth rate, TG) as well as
changes in storage S (i.e., DS). Although assimilated materials may be incorporated
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F I

Figure 1. Schematic of model for individual consumer growth. F = food source (mass per unit
time "arriving" at the consumer), I = ingestion rate, G = food mass in gut, E = egestion
rate,A = assimilation rate, L = labile fraction, RE = respiration/excretion rate, TG = tissue
growth rate, T = tissue, DS = storage rate, S = storage. Growth rate is defined in this system
as (TG + DS) or the change in (T + S) with time.

into tissues or storage at relatively different rates, depending on metabolic needs and
available food, we consider growth rate as the sum of TG and DS. Growth rate,
therefore, is simply the difference between rates of assimilation A and respiration
plus excretion RE (Fig. 1). Note that this formulation allows for negative growth if
respiration plus excretion is greater than assimilation.

We begin with a stochastic model for individual prey particles encountered by the
predator. Once we understand the dependence of an organism's growth rate on the
rate at which it encounters food particles, we can begin modeling the effect of
patchiness which makes the "arrival" rate vary in space and time. We define the
encounter rate E as the average number of particles the predator encounters per unit
time:

C!7
E=-=-

M

where C is the average food concentration (mass/volume), STthe average foraging!
filtering rate (volume/time), and M the average mass of a particle. Food particles
considered are those of a size which the predator is capable of ingesting. The
foraging/filtering rate,g; depends on the predator's swimming and perceptive radius,
the prey's movement (which is relatively small), and the level of turbulence. It is the
interaction between these factors that transforms spatial patchiness into temporal
variations in prey encounter.

We first represent particle mass and interval between encounters as random
variables, and then simplify the model by averaging over many arrivals, assuming that
they occur rapidly compared to the time scales of the predator's growth dynamics
(Fig. 1). The mass of food arriving within range of tlhe predator per unit time, F(t),
can be modeled in terms of individual food particles appearing in a random series
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(2.1)

Figure 2. Random time series of individual food particles encountered by a consumer. Food,
F, is mass per unit time "arriving" at the predator. Area under each Gaussian spike
corresponds to the mass an individual prey. Width of each spike corresponds to handling
time, 'T, of the prey, which may be ingested or rejected depending on gut fullness. Since 'T is
small relative to time between encounters, each spike approximates a Dirac delta function.
In addition, particles arrive rapidly relative to the consumer's growth rate so that this
statistical representation can be converted to a deterministic one giving the expected value
for arrival rate of food mass. Arrival rate is dependent on particle size distribution as well as
on body size of predator.

(see Fig. 2):
F(t) = ~ M/!J(t - tJ

1 (-(t - tY)
== ~Mi~ exp ,.2

where t is time, Mi is the mass of the i'h food particle (in chronological order), ti is the
time at which it arrives, T is the handling time, and:if is the Gaussian function. Thus,
each food particle is represented as a single Gaussian pulse, the sum of these pulses
giving the function F(t). The integral of:if is one, so that the net mass (the integral of
F) for a single encounter is indeed Mi' The function F(t), shown graphically in
Figure 2, appears as a random series of spikes which correspond in area and
temporal spacing to individual particle mass and arrival time, respectively. In the
limit as T becomes very small, :if becomes a Dirac delta function. To construct a
realization of F(t) we need to specify the distribution of masses, Mi, and arrival
times, ti, which are both random variables. In the field, particle frequency decreases
with increasing diameter according to the well known Sheldon spectrum (Sheldon et
ai., 1972; Platt and Denman, 1978)-the biomass in each octave is the same.
Therefore the probability distribution function9'(M) must satisfy

f:M '9'(M') dM I is independent of M

This will occur when the indefinite integral is a log, so that the definite integral
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depends only on the ratio of the limits. Therefore the probability of finding a particle
with mass between M and M + dM is proportional to dM/M2

•

For arrival times, we use the following argument. If the particles are randomly
scattered in space with a uniform distribution (on the relevant subpatch scales) and
the foraging rate is constant, the arrival times will also have a uniform random
distribution. The time between arrivals then has a known distribution (Stevens, 1939)
characterized by the mean, which is simply the inverse of the average encounter rate,
E:

(2.2)

To a reasonable approximation (Newall, 1963), the probability of an arrival interval
being in the range 'T to 'T + d'T is just an exponential distribution, E exp (-E'T)d'T.

As the animal grows, however, it moves through the spatial array of prey more
rapidly, so that the encounter rate increases (and therefore the mean time between
arrivals decreases). This is reflected in the variation of the foraging rate, sr; with
predator weight. Foraging volume is taken to be a power function of the organism's
weight w (eg. Huntley and Boyd, 1984). Let Wo be the initial weight at time t = 0 and
Eo be the rate at which organisms of that weight encounter food particles when the
food concentration is Co' Then we take

(2.3)

The weight dependence (m > 0) represents the fact that larger animals can forage/
filter larger volumes. From food concentration, turbulence (which alters the factor
Eo), and the predator's foraging rate, we can estimate the encounter rate E. Note
that this rate is for encountering particles of any size within the range which the
predator can eat. Next, we shall consider the probability that a particle is ingested,
given the particle mass and the body weight and gut mass of the predator.

We shall take the probability that an encountered particle of mass M will be
ingested to be

where G is the current gut mass and a + (w/woY is the maximum possible gut mass at
the current body weight. (The constant a + is thus the maximum gut mass for an
organism of weight wo.) The function Fi will be zero when its argument is negative
(predator too full to ingest particle) and approaches unity when its argument
becomes positive enough. The simplest form is just a step function, but smoother
functions could also be considered.

b. Average growth of a predator. We could design a stochastic simulation to generate
the next arrival time and particle mass, given the current predator weight, and then
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we could decide randomly whether or not the particle is ingested given the current
mass in the gut G and the probability function Fj' However if the particles arrive
frequently enough compared to the biological times scales, it is useful to convert the
statistical model into a deterministic one.

We can calculate the expected value of the ingested mass per unit time:

where the constant ex can be found by choosing the rate of ingestion /0 for organisms
of weight Wo which have empty guts G = 0 and which are feeding at food
concentration Co' If we use a step function form for Fj, we can carry out the integral
above to find

(2.4)

with ex = 100Eo and Mmin is the lower limit on the prey that the predator will ingest.
This expression simplifies considerably in the case where the powers sand mare
identical and where Mmin scales as a_(w/wo)m (which implies that the ratio of maxi-
mum prey mass to minimum prey mass a)a_ is fixed over the predator's planktonic
life). The constant a_ is the minimum particle mass ingested by a predator of mass woo
Then (2.4) becomes

(2.5)

It is possible to make similar arguments in the case of other forms of Fj as well; we
find that ingestion depends only on G/(w/wo)m when the prey masses span a fixed
ratio. As shown below, this leads to familiar looking ingestion versus food concentra-
tion curves when the gut is in equilibrium.

If we now let rates of assimilation and egestion be proportional to mass of food in
the gut, G, we have

Eg = (1 - ae)ap

(2.6)

(2.7)

where ag is rate of gut evacuation, and ae is the fraction of food lost from the gut by
assimilation. When the gut is in equilibrium (so that / = A + Eg), ae corresponds to
the assimilation efficiency (A/I).

At a given fixed temperature, the weight-dependent respiration plus excretion is
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(2.8)

(2.9)

where a, (the rate for an organism of weight wo) and n are found from experimental
observation. Combining equations (2.5-2.8) gives the general equations for growth

Dw .
Dt = A - RE = aeagG - a,(w/wo)"

(2.10)

Although this growth formulation does not include ingestion-dependent assimila-
tion efficiency or respiration (specific dynamic action), these effects are expected to
be small. Most ingestion-dependent respiration is due to specific dynamic action
(Kiorboe, 1985; Lampert, 1986) which scales with assimilation. When variations in
gut mass are small, this effect can be included as a constant in the assimilation term
and is therefore independent of patchiness. Likewise, variations in assimilation
efficiency (± 10%; Landry et a/., 1984) are small relative to 2-3 fold changes in food
concentrations commonly observed in the field and used in the present model.
Preliminary calculations have shown that ingestion-dependent assimilation efficiency
has little effect on growth rate response to patchy food.

c. Solutions. Finally, we look at solutions to our model (2.9-10) and examine the
dependence of the growth rate on food concentration. These calculations indicate
that a simple exponential model, with the growth rate proportional to food concen-
tration, is a reasonable approximation to the full growth model.

In the Appendix, we solve these equations in the special case where m and n are
both one and (2.9-10) can be linearized. This derivation shows that body weight
grows exponentially and that the growth rate is nearly proportional to the food
concentration C. In addition, we remark that, when the gut is in equilibrium, we can
neglect the left-hand side of (2.10), yielding

A A

where G = G/(w/wot. We can use the left hand equality to eliminate G on the
right-hand side, thereby obtaining a single relationship between the ingestion, I, and
the food concentration, C, as plotted in Figure 3. In equilibrium, ingestion depends
on food concentration in a fashion similar to Ivlev's (1955) model: the saturation
stems from the decrease in ingestion when the mass of food in the gut becomes too
large compared to the weight of the organism. A good fit to the Ivlev curve is
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Figure 3. Ingestion rate (mass/time) versus food concentration (mass/volume) as determined
fTOm equation (2.10) of the individual growth model with the gut in equilibrium (i.e.,
DG/Dt = 0). The model was parameterized for Calanus pacificus. Size distribution of
available food particle mass was assumed to follow the Sheldon spectrum (solid curve) with
uniform mass (zero slope) as a function of size (octave scale) as well as the theoretical model
of Platt and Denman (1978) (long dash) with the slope = -0.22. Shown for comparison is
Ivlev's (1955) curve parameterized for C. pacicifus (short dash). Saturation is due to
increasing gut fullness at higher food levels.

obtained if we match the saturation value, I/(w/wot, the slope at the origin, and the
value offood concentration at half-saturation. The latter implies that aja+ = 0.129,
so that the organisms are ingesting food particles with about an order of magnitude
range in mass. Note that the choices of s = rn and the form of Mmin come from the
indications that the slope and saturation value both scale as (w/wot and that the half
saturation value of food concentration is independent of the predator's weight. Of
course the evidence for these is much less certain than the general shape of the
ingestion curve; we do not believe that our conclusions depend significantly upon the
exact assumptions.

For the case when m and n are unequal and less than one, we solved the equations
numerically to show that growth is nearly exponential, with the rate proportional to
food concentration. Parameters values were estimated from the data of Vidal (1980)
for Calanus pacificus grown at 12°C (all units are based on ~g carbon and days).
Respiration values are ar = 0.42 and n = 0.82. The exponent for the dependence of
foraging and also of maximum gut fullness on weight was m = 0.77. The gut
evacuation rate, ag = 55.3, is based on a clearance (90% loss) time of one hour
(Marshall and Orr, 1955), and assimilation efficiency a.was taken to be 0.75 (Landry
et at., 1984). Food concentrations were in the limiting range (50-150 ~gC/I). Vidal's
data for maximum ingestion rate (saturating food) were used to derive the coeffi-
cients 10 = 1.607 and a + = 0.0334. Figure 4 shows the log of the weight versus time for
various food concentrations. The near linear nature of the curves indicates that
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Figure 4. Change in body weight (~gC) versus time (d) of Calanus pacificus as determined
from the individual growth model (equations 2.9-2.10) assuming exponents for weight-
dependent filtration and respiration rates are unequal and less than one. The curves of loglD
(weight) vs. time at different food levels (~gCI1) are nearly linear showing that growth is
approximately exponential in this limiting range of food (see Fig. 3).

growth is approximately exponential. When there is not enough food, the weight
decreases. When the concentration reaches a critical value, the organism can
maintain a steady weight; above this, growth is positive. We estimate a growth rate
over the time period indicated on Figure 4 and plot it as a function of food
concentration C in Figure 5. The growth rate saturates at high food concentrations
( > 200 I-LgC/l)and has a roughly linear dependence on food in the relevant range,
(50-150 I-LgC/l).

As a particular example, we present in Figure 6 a detailed solution of (2.9-10)
using a time-varying food concentration C = 100 + 50 cos (2'1Tt/1day) ~gC/1.This is
compared to a solution of

DB
- =g(C)BDt (2.11)

withg(C) being the particular linear functions of C shown in Figure 5 (dashed lines).
The weight histories are very similar. Thus a fairly simple exponential model gives a
reasonable representation of the growth, and we shall use it in subsequent sections.
Next we shall include additional terms in Eq. (2.11) to account for the organism's
movement.

3. Swimming diffusion and growth of predator
The combined effects of swimming, physical turbulence, and patchy individual

growth rate on predator population growth were expllored in stepwise fashion. In this
section, a diffusion term for predator swimming is derived from a random walk
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Figure 5. Growth rate over the 10 d period shown in Figure 4 as a function of food concen-
tration, C ("",gC/I) as determined using the individual growth model (solid). The two dashed
lines show linear relationships between food and growth which are used in the exponential
model, Eq. (2.11). The long dashed line is a least squares fit over the range 50--150 ~gCI1
while the short dashed line is chosen to represent the details of the growth shown in Figure 6
over the whole period. They are different because the growth rate is somewhat sensitive to
weight; the lines in Figure 4 are not truly straight.
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Figure 6. Body weight (~gC) versus time (d) for exponential (dashes, corresponding to the
lines in Fig. 5) and full growth (solid) models. Food concentration fluctuates as a cosine
function in the limiting range (50-150 ~gC/I) with a period of one day. The exponential
models, with growth rate a simple linear function of food concentration, can closely
approximate the more complex full growth model.
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model, and a basic equation relating growth and swimming diffusion is given together
with an example of the interaction between these variables. A general analysis of the
basic equation follows (Section 4) showing the relationship between swimming,
growth, and patch spatial structure. Finally (Section 5), the equation is expanded to
include the turbulent component of the encounter velocity so that the magnitude of
this effect can be gauged against turbulent dissipation of the patchiness. The latter
form of the equation was solved numerically for selected cases.

a. Swimming diffusion. It is necessary to understand the difference between swim-
ming and physical diffusion processes. For swimming behavior, the diffusion equa-
tion takes the form

rather than the more familiar parameterization

a a a
-B=-K-B
at ax' ax

(3.1)

(3.2)

for physical diffusion. This distinction is a very important factor in both the local and
the net enhancement of growth associated with patchy food: biomass accumulates in
regions where K2 is small while variations in K, affect the spreading rate but do not
give accumulation. Okubo (1980) discusses various forms leading to (3.1) with
constant K, using random jumps between prey where the concentration of prey
varies. Here we shall derive a form like (3.1) from a more realistic model of foraging
which explicitly includes the swimming velocity required for the predator to move
from place to place.

Let us divide the population biomass into three groups, one moving left, one right,
and one which is stopped, with biomasses bl, br, and bo, respectively. We define
transition rates (which depend on prey density) between these three states. Then we
have equations for time changes in each of the biomass groups:

a a R
aib, = ax (vb,) - (T + S)b{ + lb, + '2bo

a a R
atb, = - ax (vb,) - (T + S)b, + lb, + '2bo

a
at bo = Sb, + Sb, - Rbo

(3.3)

(3.4)

(3.5)

where T is the rate of turning without stopping, S is the rate of stopping, and R is the
rate of starting from a stopped state. Notice that we have assumed a number of
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symmetries: for example, predators starting to move will go with equal probability in
either direction and turning/stopping rates are independent of the direction of
movement. The swimming rate v is assumed to be the same in either direction,
although it may vary spatially. We can rewrite these equations in terms of the
biomasses at any point B(x, t) = bl + br + bo and the net rightward moving biomass
Br = br - bl as

a a
atB = - ax (vBr)

a a
atBr = - ax [v(B - bo)] - (2T + S)Br

(3.6)

(3.7)

(3.8)

Let us first look at the steady-state solutions to this model. Eqs. (3.6-8) have steady
solutions when Br = 0 and v(B - bo) is constant since B, Br, and therefore bo are then
constant in time. Using these criteria we find

S+R
B = ~const. (3.9)

(where the constant is v(B - bo)). This equation implies that predators accumulate
in regions with high prey density, since these are regions in which one would expect
the rate of stopping, S, to be high and the rate of starting, R, to be low. It is also
possible that the swimming rate v decreases in higher food areas (Hunter and
Thomas, 1974).

Note that the rate of turning (without stopping), T, does not enter into the
expression (3.9) for accumulation of biomass. An independent random-walk model
which we developed for an organism swmimming through a patchy prey field
confirms that the process of turning more rapidly in high prey regions only affects the
spreading rate but does not lead to final accumulation. Rather the time spent in
reduced swimming or in handling prey (and not swimming) determines the accumu-
lation.

We now consider the time-dependent evolution of B(x, t) and show that it is the
rates of stopping, starting, and swimming which determine K2 (Eq. 3.1), whereas rate
of turning affects only K•• We shall assume that the time scale for motion through a
patch (length scale/v) is long compared to the time scales for starting (1/R), stopping
(1/5), and turning (liT). In that case equations (3.7-3.8) are always in quasi-
equilibrium so that
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with the biomass evolving according to

~ B = ~ [(2T : S) ~ (S : R)B] .
Eq. (3.10) is identical in form with (3.1) if we identify

v vR
KJ = 2T + Sand Kz = S + R'

(3.10)

As stated above, we anticipate that in regions of high prey density the predator is
more likely to stop and less likely to start swimming. Furthermore, since more time is
spent stopped, less will be spent turning without stopping. This would imply that T
and R decrease with increasing prey density while S increases. This is the simplest,
conservative, assumption, i.e., that predators have no memory but remain in high
prey areas longer simply because more time is spent capturing and handling prey. In
addition, as mentioned above, predators may actively modify their swimming speed
according to prey density such that in high prey regions v also decreases (Hunter and
Thomas, 1974). Therefore Kz will decrease with increasing prey concentration, while
the changes in K, may be of either sign. (One could imagine other scenarios especially
with respect to T, but one would still expect Kz to behave similarly as long as the
stopping/starting process depends on prey concentration.) For maximum simplicity,
we make the choice that 2T + S and v are constant, equivalent to the hypothesis that
the total net rate of turning, including both turning without stopping and stopping
and restarting in the opposite direction, is fixed. This makes KJ a constant (chosen to
be one) while

vZR

K = (2T + S)(S + R)

and varies inversely as the encounter rate. In this case, when KJ = 1,we shall drop the
subscript on Kz.

The form (3.1) with the second spatial derivative of diffusivity allows predator
biomass to gather in areas of high prey concentrations even without actual growth.
The variable Kz in Eq. (3.1) is permitted for "biological" diffusion caused by random
swimming of organisms because of the "compressibility" of population biomass. In
physical diffusion, the constraint of volume conservation requires that only KJ be
variable. In a sense, fluid particles only turn but do not stop. With the present
formulation, which for now considers only biology, predators will diffuse out of areas
of high "swimming diffusion," K, and into areas of low swimming diffusion.
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(3.11)

b. Swimming diffusion and growth. In Section 2, we found that growth rate in
fluctuating food was approximately exponential and proportional to food concentra-
tion so that patchy food supply translates directly into patchy growth rate. We now
explore the interactive effects of patchy growth rate and swimming on predator
population growth using an equation of the form

a a2

- B = gB + - (KB)at ax2

where B(x, t) is the biomass of the population at time t at a point x in a one
dimensional domain, g(x, t) is the weight-specific growth rate of B at (x, t), and K(x, t)
is the diffusion rate of B at (x, t) due to the swimming behavior of the predators.
Predator population biomass, B, can be considered as an ensemble average over
many growth (= prey) patches and many predators. To illustrate the nature of the
basic mechanisms involved, we choose an example in which the growth rate g varies
in time and space according to

g = b - a cos (kx - wt) (3.12)

where a, b, and ware chosen to simulate the effects of patchy prey on predator
growth rates found using the individual growth model discussed above. From Section
2, we can assume that growth is exponential, approximating the growth curve derived
from Eqs. (2.9-10). This is a common form for zooplankton (e.g., Huntley and Boyd,
1984, copepods; Bolz and Lough, 1983, cod and haddock larvae). The diffusion
coefficient, K, includes a mean diffusivity Ko together with a space and time depen-
dent diffusion term due to variable predator swimming and food handling

K == Ko + K2 cos (kx - wt) (3.13)

(3.14)

where K2 is the maximum variation in diffusion due to variations in swimming. By
choosing a > 0 in Eq. (3.12), the diffusivity (Eq. 3.13) is highest where growth rate
(prey concentration) is lowest. As discussed above, this can be associated with lower
stopping rates S or increased swimming velocity v in areas of low growth. Conversely,
in areas where prey concentrations are highest, predators diffuse at only background
rates Ko - K2; this is due to residual swimming at high prey densities. Substituting
equations (3.12 and 3.13) into (3.11) gives

a a2

at B = [b - a cos (Ia - wt)]B + ax2 [Ko + K2 cos (Ia - wt)].

For illustrative purposes, parameter values are chosen for Eq. (3.14) to approximate
growth and swimming of a 1.0 cm haddock larva feeding in a 10 m (wavelength) patch
of copepod nauplii. Haddock growth,g, has a minimal value of -0.05 and a maximum
of 0.15 (ct. Laurence, 1985b). Values of Ko and K2 are more difficult to estimate. For
random swimming by a larva we take velocities up to 1.5 body lengths per second
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(1.5 cm/s) in the low prey region to 0.5 cm/s in high prey regions (Laurence, 1985a;
Hunter and Thomas, 1974; Munk and Kiorboe, 1985). Given a perceptive field of
1.0 cm2

, a range of prey concentrations of 10-100/liter gives times between prey
encounters ranging from 67-20 seconds. We can use this to estimate a rate of
stopping as the inverse of these times; if we then assume that the handling time, and
therefore R is fixed, we find the ratio of ditIusivities to be

Ko + K2 = 1.5: (R + 10/200).
Ko - K2 0.5 R + 3/200

It can be seen from this expression that even a relatively short handling time, lIR,
(4/3 seconds) causes the ditIusivity to vary by a factor of 10. If we take this factor as a
conservative estimate for variation in swimming diflusion, we can estimate a maxi-
mum diffusivity Ko + K2 by assuming that the predators will turn within 10 cm (i.e.,
10 body lengths) in the absence of prey, i.e., Ko + K2 = 10 cm2/s.

A similar range in ditIusivity is found using Okubo's (1980) expression

K = Y2vl

where v is the swimming speed and I is mean free path. If we let I equal 0.1 x distance
between prey (i.e., 10-1 cm), K ranges between 7.5-D.75 cm2/s.

Eq. (3.14) was solved numerically, and spatially averaged population growth was
computed through time. A fully implicit numerical scheme (Roache, 1982) was used
together" with periodic boundary conditions. Numerical stability was checked by
reducing the time step. Accuracy of the scheme was confirmed via comparison with
analytical solution of 1-D advection diffusion of a scalar and with the two-step
explicit method discussed in Davis (1984a). Time units are in days and space was
nondimensionalized with a domain size of 21T radians.

Several parameterizations of this spatial model were used to examine the effects of
patchy individual growth rate on population growth. Initially, to observe the effects
of only spatial variation in growthg (i.e., no swimming), the parameters w, Ko, and K2

were set equal to zero. With a uniform initial distribution of predators (i.e., B(x,
0) = 1.0), the population was allowed to grow to near steady state at t = 100 d (Fig.
7). The analytical solution to this simple case gives a steady state population growth
rate of 0.15/d which is closely approximated numerically (Fig. 7A). The relative
spatial distribution of biomass within the domain approaches a delta function (all
biomass at a single point) at x = 1T as t approaches infinity (Fig. 7B). This occurs
simply because biomass grows most rapidly at patch center. Background (spatially
uniform) diffusion, set to the minimum value K = Ko - K2, by itself (i.e., when w = 0)
causes a reduction in maximal growth rate with increasing K and smooths out the
spatial distribution of B from that shown in Fig. 7B. Note that only predators are
diffused in this case since K is due to uniform swimming by predators, and that the
prey (i.e., growth rate) patch is fixed since w = 0.0.
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Figure 7. Effects of patchy individual growth rate (ex food concentration) on population
growth when patchiness is time invariant. Left panels (A and C) show spatially averaged
weight-specific growth rate (ld) (solid) and In of body weight (dash) vs. time. Right panels
(B and D) show weight-specific growth rate (long dash) and biomass distribution (solid) vs
distance (domain size normalized to one) at t = 100 d (i.e., near steady-state). Growth
without and with predator swimming are shown in top (A-B) and bottom (C-D) panels,
respectively (note scale changes in A and C). Growth rate outside and inside patch is -.05
and 0.15 (ld), respectively (panels Band D, dashed curve). Model can apply to a 1.0 cm fish
larvae swimming in a 10 m (wavelength) patch of cope pod nauplii (10-100/liter) or to a
1 mm adult copepod swimming in a 1 m patch of algal cells (104-105J1iter).

Spatially variable swimming within the domain causes the maximal population
growth to be reached much faster (Fig. 7C). The population at 100 d is less restricted
to the regions of highest growth due to background diffusion (Fig. 7D). In this
example, the previously derived range in diffusivity was used, 1-10 cm2Js, which is
representative of a 1 cm fish larvae swimming in a 10 m domain. Using these values,
the larva enters the patch quite rapidly, attaining half-maximal growth in less than
2 hr, but maximal growth is reduced (O.l/d) due to background swimming diffusion
(1cm2/s).

To demonstrate the potential effects of transient prey patchiness on predator
growth we let w = 2'TT, corresponding to a patch translating through the domain once
per day. Diffusion rates are 0.75-7.5 cm2/s assuming a domain size of 10 m. The
steady state specific growth rate (0.09/d) is a significant enhancement above the
mean (nonpatchy) value of 0.05/d, an increase in specific growth rate of 80% (Fig. 8).
If prey patches are more transient than one cycle per day, the enhancement of
specific growth is less pronounced but still important. For example if a 10 m patch
appears every 6 h, i.e., w = 8'TTand K = 0.75-7.5 cm2/s, the enhancement in growth is
20% above the mean. Although this increase may not seem important, we show
below that variations in specific growth rate of only 15% from one cohort to another
can lead to order-ot-magnitude variations in recruitment.
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Figure 8. Effects of transient patchiness in growth rate on predator population growth. Top
panel show weight specific growth rate (ld) of total population vs. time (d). Bottom panel
shows steady-state (t = 10 d) spatial distributions of specific growth rate (dashed) and
biomass (solid). Patches translate through the domain at one cycle per day.

Interactions between growth, swimming, and patch size and spatial structure are
examined in detail in the next section, but immediate insights can be gained from the
examples just presented. Swimming variation has a much greater effect on enhance-
ment of population growth than does growth rate variation since the time scales for
the latter effect are long (Fig. 7), i.e., biomass accumulates in the center of the patch
more rapidly due to swimming than differential growth. Since we nondimensional-
ized space, the model applies over a range of dimensional scales, provided all length
parameters scale with domain size. Thus the example of a 1.0 cm fish larva in a 10 m
domain may also apply to a 1.0 mm copepod in a 1.0 m domain. In the latter case, the
distance between prey encounters is 1-10 em (I = 0.1-1.0 cm), and, if encounter
radius scales with body length, the prey concentrations would be 104-105/liter which
are reasonable densities for prey of a 1.0 mm copepod (i.e., algae and protozoans). A
further implication of the non dimensional spatial scale is that increasing the number
of patches in the domain (i.e., higher wavenumber) has the same effect as reducing
the domain size but keeping a single patch. A simple cosine representation for patch
structure (Eq. 3.14) provides insights into effects of patchiness on growth, however,
scale-dependent effects can be important: more complex patch patterns are dis-
cussed below in relation to mean and variance of their Fourier spectra.
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4. General analysis of predator equation
We now present some analytical results on the expected enhancement of predator

population growth rate due to variable growth and swimming diffusion.

a. General equation. The predator Eq. (3.11) can be rewritten in general form as

a a a
- B = [go(t) + g'(x, t)]B + ax Kl -a [Ko + K'(X, t)]BM x

where the terms go, Ko and g', K' are means and deviations in growth and diffusion,
respectively, g' and K' having no net spatial average. We can eliminate the mean
growth term go by defining

B(x, t) = b(x, t) exp (5' dt' go(t'))

which removes the growth which would occur in the absence of any patchiness in
prey. We then focus on the coefficient b(x, t), which represents the predator biomass
normalized by the biomass which would exist in the absence of prey patchiness. Our
goal is to determine whether there is a component of b(x, t) which has a nonzero
spatial average and which grows in time; this component represents enhancement in
the net growth associated with patchiness. The normalized biomass satisfies the
equation

a a a
at b = g'(x, t)b + ax Kl ax K2b

a a
= g' (x, t)b + ax Kl ax [Ko + K' (x, t)]b (4.1)

b. Steady case. When the prey distribution is fixed in space and time, so thatg'(x), K"

and K2 are independent of t, the predator distribution, as shown in Figure 9, settles
into a pattern with highest concentration in the regions of high prey. The pattern
scales exponentially with time; in other words, b is dominated by the most rapidly
growing eigenfunction and the enhancement to the growth rate is the eigenvalue. To
find these, we substitute

I/J(x)
b(x, t) = -( ) exp (at)

K2 x (4.2)

in (4.1), where a is the enhancement in the growth rate associated with the prey
patchiness. If we scale the eigenfunction I/J so that the spatial average of I/J/K2 is one,
then it is clear that the spatially averaged B grows at a rate f go + a from an initial
value of one. The choice of denominator in (4.2) comes from the form of b in the case
without growth. Eq. (4.2), together with the condition that I/J be periodic on the
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Figure 9. Spatial distribution of biomass at different times as determined with the predator
growth equation. Biomass, B, grows exponentially at all locations but does so most rapidly at
patch center. Factoring out the mean exponential growth (that which would occur in the
absence of any patchiness), shown by the long dashes, removes a large part of the biomass
increase. The relative spatial distribution of the biomass is determined by the most rapidly
growing eigenfunction and the spatially averaged value of the biomass, indicated by the
short dashes, grows at a more rapid rate than the biomass in the absence of patchiness. The
enhancement in growth rate, u, is the eigenvalue corresponding to the most rapidly growing
eigenfunction.

domain [0, L],gives the eigenvalue equation for IT

(4.3)

(4.4)

We shall solve this numerically; however, it is informative to consider the limit of
small variability in prey. In this case, the spatial variation in growth rate is relatively
small compared to the diffusion time across the domain, and we find that

$ = 1 + $'(x)

with IIJI'I « 1 and

Integrating this last equation from 0 to L gives an estimate of the growth rate
enhancement

[
fLg'(X) ][fL 1 ]-1

IT = Jo K2(X) dx Jo K2(X) dx

When furthermore the variability in the diffusion rate (the swimming term) is also
small, so that IK'I « /Kol, Eq. (4.4) linearizes even further

1 iL
IT = - KoL 0 g'(x) K'(X) dx. (4.5)



130 Journal of Marine Research [49,1

Since the growth rate and swimming rate variations are presumed to be negatively
correlated, we therefore find enhancement associated with the patchiness (i.e., the
product ofg' and K' is negative so that the right-hand side of (4.5) is positive).

c. Unsteady case. When the prey distribution changes in space and time, we can look
at the spatial average of Eq. (4.1) and the equation for the spatial variability. This
again can yield useful information in the small amplitude limit. If we use 0 to
indicate averaged quantities and ( )' to indicate deviations from the average, we
have

a _
at b = g'(x, t) b'(x, t)

a _
at b'(x, t) = g'(x, t)b + [g'(x, t) b'(x, t) - g'(x, t) b'(x, t)]

a2 a2 [a a _+ bKI ax2 K'(X, t) + KoKI ax2 b'(x, t) + ax K'l ax (Kob' + K' b + K'b')

+ Kl ~ K'b'],ax

(4.6)

(4.7)

Of course, we cannot directly compute the right-hand side of (4.7); however, if we
approximate by dropping terms which are quadratic in spatially variable functions
(called the "mean field approximation," cf. Herring, 1963), we obtain

a a2
[ a2

]_-a b'(x, t) - KOKJ -2 b'(x, t) "'" g'(x, t) + Kl -2 K'(X, t) bt ax ax (4.8)

which shows that b'(x, t) is a linear function of Ii; this implies that the mean equation
(4.6) will indeed have exponentially growing behavior (except for the time variability
in various coefficients). Note that the term K'l does not enter, implying that the
variation in this part of the diffusion will be relatively ineffectual compared to
variations in g and K2• The simplest case occurs when the average diffusion rates are
time-independent (so that we can set Kl = 1) and when there is a single wavenumber
and frequency for the variable growth and diffusion rates

g' (x, t) = -a cos (Ia - wt)
K' (x, t) = K2 cos (Ia - wt) (4.9)

(phase shifts could be considered also). Note that the Eq. (4.8) determining b' is
linear, so that we can superimpose many different Fourier components with different
frequencies and wavenumbers. Thus a standing wave pattern could be constructed
using a leftward and a rightward travelling wave. For the single component (4.9), we
solve equation (4.8) [assuming that the changes in boccur much more slowly than the
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variations ing'(x, t) and K'(X, t)] and find the perturbation predator biomass

, (a + K2k2)Kok2 [ W • ]
b (x, t) = - w2 + K~e cos (kx - wt) - Kok2 SIn (kx - wt) .

When we substitute this into (4.6), we find

a _ _
- b = abat

with the enhancement to the growth rate being

a(a + K2k2)Kok2
a = 2(w2 + K~k4) .

In the limit of steady prey distribution (w = 0), this simplifies to

a(a + K2k2)
a = 2KOk2

(4.10)

(4.11)

which reproduces the previous result (4.5, with the substitution of a cosine profile)
when a is small compared to K2k2

•

In general (from 4.10), we find enhancement to the predator growth as the
variability in swimming increases, or as the frequency of prey variations decreases.
The swimming variability simply enhances the organisms' ability to remain in the
regions of high prey and to migrate out of the regions with low prey. The dependence
of the growth enhancement on the mean diffusion coefficient, Ko, is more compli-
cated: if the prey pattern is steady, enhancement is increased as the average diffusion
goes down. This enhanced growth occurs because some organisms are sitting in high
prey patches and their rapid doubling more than compensates for those in low prey
environments (Fig. 9). The slower background diffusion permits them to stay longer
in the favorable environments. However, if the prey are also varying in time, weak
background diffusion decreases the effects of patchiness, since the predators can no
longer move into the favorable regions rapidly enough compared to the period of the
patch.

d. Numerical solution. For the steady case, we have solved the eigenvalue problem
(4.3) numerically and found the enhancement to the growth rate as contoured in
Figure 10. The special case (4.9) (with anticorrelation between the swimming speed
and the growth rate) has been used. Note that the net growth rate enhancement
follows the pattern predicted by (4.11): it is increased by either increasing the
variability in the swimming speed (increased K2) or by making the average diffusion
weaker.
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Figure 10. Enhancement of growth rate in predator biomass (u/a) as a function of the
swimming variability-the diffusivity ratio (KJKo)-and the background normalized diffu-
sivity (Kok:/a). The solid contours are from the solution of (4.3) plus (4.9), while the dashed
contours show the growth rates from the linearized estimate (4.11).

e. Spatial scale and patch structure. If we have more complicated spatial and temporal
structure to the prey patch, we must superimpose waves of different k and win (4.9).
The enhancement from each component is given by (4.10); to get the total, we simply
sum over the components of the patch wavenumber-frequency spectrum. If we
assume that K2 is proportional to a, K2 = k2a and that a itself is a linear !unction of
prey concentration at the specified wavenumber and frequency a = aC(k, w), we
have

(4.12)

This shows that weighting for the high frequency parts of the spectrum is relatively
small, the small scale (large k) variability contributes uniformly (i.e., only the net
variance is important), and the low frequency, large scale components give the
strongest enhancement. Figure 11 shows the weighting factor for different prey space
and time scales. The estimate (4.5) for steady state situations is also consistent with
the enhancement depending on the variance in the prey field:

Eq. (4.12) permits us to assess the limits of validity of this approximation. In
particular, it applies when most of the energy in the prey spectrum falls in the part of
the (w, k) plane where the weighting is constant (see Fig. 11). This corresponds to
w « Kok2 (prey time scales long compared to diffusion time) and K2k2 » a
(variability of diffusion times small compared to variability in growth rates). Note
that these remarks do not mean that this parameter region contributes most strongly
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Figure 11. Influence of various spatial and temporal scales of the prey patches on growth
enhancement. As an example, for a 1 cm fish larva (as in Fig. 7), the patch wavelengths run
from 0 to 100 m and the periods from 0 to 10 days. Light contours indicate the zone which
most affects the net growth. In this case, the values are only slightly elevated in this region.

to growth-indeed, the most important part is the low frequency large scale region
where the second inequality does not hold-but only marks the region where the
enhancement is sensitive only to the net variance, not to the spatial structure.

The formula (4.10) also reveals how the growth rate of different types of organisms
would be altered by patchiness in their food source. The ratio a/a depends on the
parameters Koe/a, KiKo, and w/a. Different organisms might have rather similar
ratios KiKo since these both depend on swimming speeds. The other parameters
measure the ratio of the rate for diffusing across a patch compared to the difference
in growth rate from inside to outside the patch, Kok2/a, and the ratio of patch
frequency to growth rate difference. For example, a 1 cm larval fish in 10 m domain
diffusing at 100 cm2/s and a 1 mm copepod in aIm domain diffusing at 1 cm2/s take a
similar time (104 s) to diffuse across the domain; if their growth rates are similar, we
would then find similar enhancement.

S. Effect of turbulent encounter

From the above analysis we have found that microscale patchiness of prey, in the
absence of physical diffusion, can significantly enhance predator growth rate. We
now examine the combined effects of patch dissipation and increased encounter
velocities due to physical diffusion together with variable growth and swimming.

a. Incorporation of turbulence. Physical turbulence is included in the growth and
diffusion terms of the predator Eq. (3.11) as follows:

First, turbulent encounter rate is given by the expression of Rothschild and
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Osborn (1988) as modified by Evans (1989):

Eo = Ju2 + v2 + 2w2 P(x, t)

where Eo is encounter rate (/s), u and v are prey and predator swimming velocities
(cm/s), w is encounter velocity due to physical turbulence (crn/s), and P is prey
concentration (# prey/em). In order to allow for dissipation of prey as well as
predators, prey abundance will be computed from an equation analogous to (3.11):

a a2

-;: P = -2 [Kp + Kps(X)]Pvt ax
where Kp is eddy diffusivity and Kps(x) allows for reaggregation of prey thus serving as
a generic forcing mechanism for prey patchiness. The distribution of Kps was derived
by transforming spatial variance spectra into physical space. In the example below
only a simple cosine distribution of Kps is used.

We have not included any feedback from the predator upon the prey field, as
appropriate for larval fish which are often too dilute to affect the prey abundance
(c.f. Davis, 1984b; Bollens, 1988; Cushing, 1983). We anticipate that the amplitude of
prey patches will be lower when the predator can efficiently graze down prey patches,
as may occur for the case of copepods.

Second, predator growth rate, 8, was linearly related to encounter rate by

8 = 81Eo + 82

whereg1 (lprey) andgz (Is) are constants.
Third, diffusivity, K, is represented as the sum of physical, Kp, and swimming, Ks

diffusivities. Predator swimming ditfusivity was inversely related to encounter rate by

Ks = k/Eo

where k1 (cm2/s2
) is a constant.

Substituting these expressions into the predator equation (3.11) gives

a f[ ~]atB = (gIEo + g2)B + ar Kp + Eo B.

Physical diffusivity, Kp (cm2/s) and w were related to surface wind speed, U10 (rn/s),
through the turbulent kinetic energy dissipation rate, e (watts/m3

)

Kp = 6.25 X 1Q3e

and

w = 1.9(Er )1/3

(where r (cm) is the eddy separation distance, Rothschild and Osborn, 1988; relation
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Figure 12. Relationship of physical forcing parameters used to assess the impact of turbulence
on patchiness and growth rate. A) Turbulent kinetic energy dissipation rate, E, versus
surface wind velocity, UIO' for upper (top curve) and lower (all curves) 10 m of the surface
mixed layer (from empirical equations in Oakey and Elliot, 1982). Curves for the lower 10 m
are for different mixed layer depths, 2m/; E is the same in both upper and lower regions when
the mixed layer depth is less than 14 m. B) Physical diffusivity, Kp, and turbulent encounter
velocity, w, versus dissipation rate based on equations given in text. The values for
dissipation rates are typical for the surface mixed layer in the open ocean.

of K to E taken from Denman and Gargett, 1983, using values for buoyancy and E

from Oakey and Elliott, 1982).
Relation of E to U\O was taken from Oakey and Elliott (1982) for the upper and

lower 10 m of the surface mixed layer

Eupper = 1.33 X 10-6 Uto

and

Clower = (3.15 X 10-6
- 1.33 X 10-7 2m/ )Uio.

Dissipation increases as a cubic function of wind speed and in the lower layer
decreases linearly with mixed layer depth, 2ml (m) (Fig. 12a). Eddy diffusivity is
linearly related to dissipation rate, while physically induced encounter velocity
increases only as the cube root of E (Fig. 12b). Thus, in this model formulation, Kp
scales as the cube of wind velocity while w scales linearly, and, for the lower mixed
layer, w decreases as the cube root of mixed layer depth while Kp decreases linearly
(Fig. 13).

b. Effects of turbulence on growth. Given these relationships for physically dependent
growth and diffusion we can explore the effects of wind mixing and prey patchiness
on predator growth rate. We first consider the case of a steady wind at various
velocities and examine predator growth with and without prey patchiness and with
and without turbulent encounter. We do this for fixed and diffusing prey patches.
Finally, we examine the case of variable winds, i.e. time-dependent patchiness. The
model was dimensionalized as above (Section 3) for a 1.0 cm haddock larva in a 10 m
domain. A simple cosine distribution of Kps gave prey levels proportional to
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Figure 13. Contours of physical diffusivity, Kp, and encounter velocity, w, in the bottom 10 m of
the mixed layer as functions of surface wind speed, VIO, and mixed layer depth, Zml, taken
from relationships shown in Figure 12. When mixed layer depth is less than about 15 m,
values of K and ware the same as in the upper 5 m. Upper 5 m values are unaffected by
mixed layer depth. Note that encounter velocity decreases more rapidly with Zml and
increases more slowlywith wind speed than does diffusivity.

1/[cosine + const.] with mean of 15/liter and range 7-30/Iiter. Growth parametersg1

and g2 were chosen such that growth rate ranges from 0.0-0.15 (ld) with a mean of
0.05. We let r = 10 cm to approximate the separation distance of eddies at these
scales. Since swimming diffusivity, K" is equal to k/Eo and also K, = 0.5 vi, to find k)
we let u = w = 0 so that Eo = vP and I = liP, thus kl = 0.5 v211P. Again we let liP = 0.1
so that the mean free path for predator swimming is 10% of the distance between
prey or in this case 3-14 em. Population growth rate calculated from the model is
expressed as In (B/Bo) where Bo and B) are spatially averaged predator biomass at
t = 0.0 and 1.0 d, respectively. This growth rate is equivalent to the exponential rate
of increase in B over 1 day.

With these parameter values, a steady prey distribution, and physically diffusing
predators, we find that, with homogeneous prey, increasing turbulence increases the
growth rate from 0.05 to 0.069 (ld) (Fig. 14a) (long dash). In this nonpatchy case the
growth enhancement is in general agreement with Rothschild and Osborn (1988).
With a prey patch present but without turbulent encounter (i.e., w = 0), growth rate
decreases from 0.74 to 0.54 due to physical diffusion of predators (Fig. 14a short
dash); higher growth occurs at low turbulence due to predators diffusing into the
patch by swimming. With both patchiness and turbulent encounter invoked (Fig. 14a
chain dash), growth rate remains relatively high at all wind speeds with a slight
minimum (.068/d) at UIO = 10 mls wind.

In this example with a fixed prey patch, we see that, at low turbulence levels,
increased growth rate is due largely to predator swimming while at high turbulence
levels growth enhancement is due primarily to higher physically induced encounter
velocities (Fig. 14). A minimum in growth occurs because, at wind speeds < 10 mis,
patch dissipation rate increases more rapidly with wind speed than does turbulent
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Figure 14. Differential effects of patchiness, turbulent encounter velocity, and turbulent
diffusion on predator growth rate. Weight specific growth rate of predator biomass is plotted
versus wind speed (mis, "" knots/2) for stationary (A-B) and passively diffusing (C-D) prey
patches in upper (A-C) and lower (D) parts of the surface mixed layer. Predators diffuse in
all cases due to physical turbulence and swimming. Curves in (A-B) represent growth rate of
predator in: homogeneous prey with turbulent encounter (long dash); patchy prey without
turbulent encounter (short dash); and patchy prey with turbulent encounter (chain dash).
Curves in (C-D) are for passively diffusing prey patch with (dash) and without (solid)
turbulent encounter. Model was parameterized for a 1 cm haddock larvae swimming in a
patch of cope pod nauplii. Prey patch size was 10 m in (A, C, and D) and 3 m in (B).

encounter velocity, whereas, at higher wind speeds, the rate of turbulent encounter
becomes the dominant factor controlling growth rate.

The chosen parameter values cause predator swimming diffusion to be somewhat
lower (2-9 cm2/s) than turbulent diffusion (Kp = 1-38 cm2/s, upper mixed layer). Ifwe
assume a patch size of 3 m rather than 10 m (keeping the range in prey concentration
the same), the relative rate of swimming diffusion increases by a factor of 10 and
turbulence then causes an overall increase in growth rate (Fig. 14b); note that
patchiness with turbulence yields much higher growth than found with turbulence
and homogeneous prey. Thus swimming diffusion has a greater impact on growth
rate as patch size decreases. This is because physical diffusivity scales roughly with
distance (actually with the 4/3 power of length) but predator swimming speed is
unaffected by reduction in domain size from 10 to 3 m.

If we now let an initial prey patch (10 m) diffuse passively due to turbulent mixing
without any reaggregation (i.e., letting Kps = 0 after initial prey patch is formed), we
find that, in the upper layer, the growth rate falls off sharply at low wind speeds due
to dissipation of prey (Fig. 14c), but increases again at higher wind speeds in the case
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Figure 15. Effects of temporally varying winds (top panel) on growth of plankton in upper
(solid) and lower (dashed) 10 m of the surface mixed layer. In upper layer, growth is
enhanced during low and high winds due to increased patchiness and turbulent encounter,
respectively. Intermediate winds destroy patchiness but do not increase turbulent encounter
enough to compensate. In the lower mixed layer, turbulence in weaker, and, although high
winds diffuse the patchiness, turbulent encounter velocities remain small.

including enhancement of encounter due to turbulence. In the lower layer (Fig. 14d),
(Zml = 23 m), the decrease in growth rate is similar to the fixed patch case (Fig. 14a
short dash) but growth at higher wind speeds is lower because the turbulence is too
mild to substantially increase encounter rate (Fig. 14d). Decreasing the domain size
(or increasing predator swimming diffusion) was found to have little effect on growth
rate in the latter case since prey patch dissipation is the dominant cause of growth
rate reduction.

The time-dependent solution with varying winds (Fig. 15) reflects the results of the
steady wind case. With wind velocity varying daily from 5-10 mJs, growth in the upper
mixed layer (solid line) is greatest at minimal and maximal winds and lowest at
intermediate wind speeds. As in the steady case, low winds allow predator/prey patch
formation while high winds cause significant turbulent encounter. Intermediate
winds destroy patchiness but are not strong enough to substantially increase turbu-
lent encounter velocity. In the lower mixed layer (Zml = 23 m, dashed line), increas-
ing winds cause patch dissipation but the turbulence at high wind velocities remains
too low to significantly increase encounter velocity. In this time-dependent case we
invoked reaggregation of prey (Kps > 0) at a rate sufficient to overcome physical
diffusion at the lowest wind speeds. As discussed below, however, this recovery rate
requires unrealistically large swimming speeds on the part of the prey, and it is
unlikely that prey swimming can cause micropatchiness in the ocean (see Discus-
sion).
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6. Relation of growth rate to mortality rate and recruitment
The above analysis suggests strongly that micropatchiness and turbulence can

cause variations in planktonic growth rates. Although relative deviations as high as
50% were found, in some cases the changes may be relatively small ( < 10%). We now
examine the relationship between growth and mortality rates and their relative
importance in the recruitment process. Our goal is to determine how deviations in
mean pre-recruit growth rate translate into recruitment deviations. First order
estimates of this kind, for larval fish (Houde, 1982), show that relatively minor
changes in development time can lead to large variations in recruitment. We present
a second order analysis including weight and time dependent parameters. Recruit-
ment is considered as the number of individuals reaching a particular body size
(weight) per unit time, rather than age class. This is a useful definition, since, for
most planktonic organisms, age is difficult, if not impossible, to determine. This
analysis can also be applied to age based recruitment as discussed below.

The change in numbers of individuals within a cohort over time can be expressed

a a
-N+-gN= -mNat aw

where N(w, t) is the number per unit weight class at time t, g(w) and m(w) are
weight dependent growth and death rates, and w is individual body weight. The
middle term represents individuals passing into and out of a given size range due to
growth.

We express weight dependent growth as

dw
-=g= Gq(w)
dt

where q(w) is a weight-dependent growth function (time invariant), and G is the
instantaneous growth coefficient which varies between generations but is constant
within a generation.

Integration over the pre-recruit period gives

L""dw
--= Gt

"'0 q(w) ,

where Wo and w, are initial and recruited body weights, respectively, and t, is the
duration of the pre-recruit stage or the time to reach w,. t,varies between generations
due to variations in G.

In the simplest case, for a cohort of uniform weight spawned at a single time, t = 0,
we have

dN
dt = -m(w(t))N
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Intergration over the pre-recruit phase gives

R f"InN = - Jo dtm(w(t»
o 0

where No and R are initial and recruited number in the cohort, respectively.
With respect to weight we have

R 1 fW. m
In- = -- J" dw-No G w, q

and relating any two generations, 1 and 2, gives

It can be shown that this equation also holds for cohorts spawned over a period of
time and for cohorts having a nonuniform initial weight distribution if this distribu-
tion is narrow. From this equation, one can calculate the range in growth rates which
would be required to account for observed variations in recruitment if these
variations were due solely to changes in growth rate. In general, small changes in
growth rate between generations can cause large changes in recruitment. As an
example, we can determine the potential impact of planktonic larval growth on
recruitment to a fixed age class, as for fish populations. In this case, the above
analyses apply to the planktonic phase of life, and, to examine the contribution of
larval growth by itself, we assume post-planktonic, pre-recruit mortality rate to be
zero. We have calculated R/No for Georges Bank haddock from VPA (virtual
population analysis) estimates of stock size between 1963 and 1983 (Table 1).
Selecting R/No, equal to the 1974 value of 1.92 x 10-6 (closest to the mean,
1.7 x 10-6

), the ratios of growth (Table 1) were calculated from

Rz
In-

G! No,
G2=~'

In-
No

I

As can be seen from Table 1, most of the recruitment variability can be accounted for
by relatively small deviations in growth (coefficient of variation = 14%). These
results also apply when post-planktonic mortality rate is nonzero, but small, relative
to larval mortality rate, as is usually the case. It is obvious from these calculations
that variable growth is potentially a very important component of recruitment
variability. Although larval mortality may not correlate well with number of first year
recruits due to interannual variation in juvenile mortality (Peterman et al., 1988), as
discussed below, this does not mean the larval stage is unimportant to recruitment.
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Table 1. Recruitment/eggs and ratio of pre-recruit growth in 1974, G" to that in each other
year, Gz, from 1963-1983, assuming recruitment variability is due solely to changes in growth
rate according to equation given in text.

Year

1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983

R/E

8.960 x 10-6

0.710 X 10-6

0.074 X 10-6

0.172 X 10-6

0.009 X 10-6

0.035 X 10-6

0.296 X 10-6

0.020 X 10-6

1.250 X 10-6

3.760 X 10-6

4.070 X 10-6

1.920 X 10-6

24.61 X 10-6

3.150 X 10-6

0.330 X 10-6

5.700 X 10-6

0.500 X 10-6

0.330 X 10-6

0.144 X 10-6

0.212 X 10-6

0.300 X 10-6

G/Gz

0.883
1.076
1.247
1.183
1.410
1.300
1.140
1.350
1.033
0.949
0.943
1.000
0.806
0.962
1.134
0.917
1.100
1.134
1.197
1.167
1.141

mean ± S.D. = 1.085 ± 0.27

On the contrary, for a given level of juvenile mortality, fluctuations in larval growth
or mortality rate will translate into recruitment variation.

7. Discussion
The above results suggest strongly that micro scale patchiness in planktonic prey

concentration can enhance predator growth and recruitment success. As modeled
here, physical turbulence, at intermediate levels, causes patch dissipation and
reduced growth, whereas, at higher levels, it causes growth to be restored to original,
low-turbulence, values due to increasing encounter velocities. Variations in popula-
tion growth rate due to turbulence and micropatchiness, even if small ( < 10%), can
cause large fluctuations in recruitment by affecting duration of the pre-recruit life
stage. Such growth rate variations have the same impact on recruitment as equivalent
deviations in mortality rate.

We have shown that biological diffusion induced by non directed swimming can
cause rapid aggregation of predators into micropatches of prey. With homogeneous
prey, this mechanism causes dispersion of predators. In the absence of swimming,
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predators will grow faster at patch center and build up biomass more rapidly in this
region, but this rate of accumulation is slow and insignificant compared with
aggregation due to swimming diffusion. This model of swimming diffusion is conser-
vative since we assume nondirectional swimming on the part of the organism. In a
detailed model of larval anchovy, Vlymen (1977) found that, with directed swimming,
larvae could greatly enhance their growth rates by feeding in micropatches of prey.
An assumption of Vlymen's model was that the highest probable direction for
swimming was toward the center of a patch. It is unlikely, however, that a larva can
detect, a priori, the center of a patch several body lengths away, so that this form of
directed swimming does not appear plausible. As Vlymen (1977) points out, though,
it is unlikely that forward and reverse directions have equal probability, the larva
being more efficient at moving forward or turning up to 900

• Any sort of directed
motion would cause the growth enhancement induced by micropatchiness to be even
more pronounced than our models predict since the animals would reach patch
center more rapidly and would counteract the dissipative effects of turbulence more
effectively than in the purely random case.

The mechanism of biological "antidiffusion" or random walk up a resource gra-
dient has been discussed by other investigators (e.g., Fenchel and Finlay, 1984, for
protozoans in a vertical gradient of nutrients) and the form of the diffusion term in
Eq. (3.1) is discussed in Okubo (1980). By coupling this diffusion term with the
growth term and parameterizing the model for larval fish as well as examining the
nondimensional case, we have found that microscale patchiness of prey over a range
of < 1 to 10 m can substantially increase growth rate for zooplankton ranging in size
from copepods to fish larvae, even when the conservative assumption of nondirected
swimming is applied. These results should be independent of feeding mode (e.g.,
suspension vs. raptorial) if the mean free path of swimming is negatively related to
food concentration.

Although turbulence increases encounter velocity between predator and prey, low
to intermediate levels of turbulence cause decreases in encounter rate, and thus
growth rate, by dissipation of predator-prey patches. High levels of turbulence,
however, yield encounter velocities which are large enough to compensate for the
reduction in prey density due to homogenization. The model of Wroblewski (1984)
for northern anchovy showed that turbulence dissipated patches of dinoflagelIate
prey causing reduced ingestion. He also found that vertical swimming by the algae
was more important than algal growth in maintaining a vertical layer of prey against
turbulent mixing. His model did not include larval swimming or the effects of
turbulence on encounter velocity. Peterman and Bradford (1987) found an inverse
relation between wind speed and larval anchovy survival, and suggested micropatch
formation during calm periods increased survival. Alcaraz et al. (1985) found that
turbulence altered the evolution of phytoplankton biomass in laboratory microcosm
experiments and suggested that increased zooplankton grazing might have been
responsible. Observations of feeding in tethered copepods suggest that turbulence
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increases ingestion rate (unless food is already saturating), although it also may
cause behavioral modifications which reduce feeding rate (Marasse et aI., 1990;
Costello et al., 1990).

The rate of turbulent diffusion of a prey patch can be reduced, compared to the
purely passive case, by invoking a reaggregation mechanism which can be viewed as a
generic source for the patchiness. The minimum in predator growth rate (Fig. 14C) is
higher when prey swimming diffusion, Kps, is nonzero. Prey swimming rates required
to counteract turbulent dissipation are unrealistically high, however, and it is
unlikely that prey, such as copepod nauplii, would! be able to form micropatches in
the ocean on scales of 10 m by random swimming. The mean free path and swimming
speed of a nauplius is likely much less than 1 cm and 1 cm/s, respectively, giving
diffusion rate of « 1 cm2/s which is low relative to the physical diffusivity (1-28 cm2/s).
Since prey doubling time is even slower, it is an engima as to how prey micropatches
are formed in the ocean. It is possible that micropatches of egg-laying adult copepods
could produce micropatches of nauplii, but given swimming speeds of adult cope-
pods it is unlikely that they would be able to overcome the physical turbulence at the
10 m scale either. Micropatches of much smaller mganisms such as protozoans have
also been found (Owen, 1989) and swimming abilities of these organisms (although
impressive on a body length/s basis) or their growth rates are clearly insufficient to
form 10 m micropatches.

It is likely therefore that formation of prey micropatches in the ocean is driven by
eddy diffusion acting on larger scale biological gradients such as those in frontal
regions. Although diffusion in the present model is of the simple Fickian type, the
actual mixing process is due to advection by eddies at decreasing scales. Large
patches are stretched and broken into smaller ones as mixing progresses. Divergent
flow from a frontal region having a biological gradient could eventually lead to
microscale patchiness. Owen (1989) found that wind mixing reduces patch size and
amplitude agreeing with models of tracer dispersal (Holloway and Kristmannsson,
1984). In the present model, mixing does not affect the scale of patchiness but rather
represents a reduction of the ensemble average of patch amplitude. Our representa-
tion of diffusion is likely to cause a more rapid decrease in growth rate than actually
would result from prey dissipation. If the initial prey patch forms into smaller and
smaller patches, predators would reach the center of these smaller patches more
rapidly than they would a single larger patch of the same amplitude.

The significant effect of growth rate on recruitment has been discussed by Houde
(1982) for larval fish. Our analysis reveals that changes in growth rate are as
important as changes in mortality rate in determining recruitment. Although starva-
tion mortality may not be as important as once thought (Hjort, 1914; Lasker, 1975;
Laurence, 1985a), this does not mean that food is nonlimiting to survival. If food
levels are below saturation for feeding and growth, deviations in food supply between
cohorts will be as significant to recruitment success as similar deviations in mortality.
Finally, the recent findings of Peterman et al. (1988) that recruitment in larval
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anchovy is uncorrelated with larval survival should not be taken to mean that larval
survivorship does not contribute to recruitment. Indeed for any given cohort, the
planktonic phase, although short, accounts for at least one third of the total
pre-recruit mortality. Unless there are strong compensatory mechanisms operating
during the juvenile phase, larval survivorship will have a large impact on recruitment.
Even without density dependence, however, this impact may not be correlated with
interannual variation in recruitment, since deviations in post-planktonic survival can
be large, thus obscuring contributions of the larval stage.

8. Conclusions
Using a series of simple diagnostic models we have found that, under limiting food

conditions:
(1) Individual growth of a predator (or herbivore) is approximately exponential

and linearly related to food concentration over time scales relevant to micropatchi-
ness (> 1 h).

(2) Random swimming by consumers, when handling time and/or swimming speed
are negatively correlated with food concentration, leads to net migration into areas
of high prey.

(3) Aggregation into high food areas causes a significant increase in predator
population growth for both static and transient prey patches.

(4) Physical turbulence, at intermediate levels (upper mixed layer with winds at
5 m/s), will reduce this growth rate by homogenizing predator/prey patches, but at
higher levels (winds at > 10 mls) will restore growth to the low turbulence values due
to more frequent encounters between predator and prey.

(5) Changes in growth rate, even if slight, cause large deviations in recruitment;
growth rate variations are as important to recruitment success as are equivalent
changes in mortality rate.
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APPENDIX
Solutions to linearized growth model

We begin linearizing the growth model (2.9-10) by expanding the logarithm in the
ingestion curve:

(
Gwm)

In (a+ - G/w/wo)m) = In (a+) + In 1 - a+w:

GwO'
"" In (a+) --

a+~
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which is valid if the gut is never full. Eq. (2.10) then becomes

(A1)DG = 1 (~)m (C) _ 1 (£) G 1 _ 0 G
Dt 0 Wo Co 0 Co a+ln (o+/a_) g'

When the powers m and n are chosen to be one, the growth equations become simply

(A2)

(A3)

and

Eqs. (A2-3) have exponential solutions with growth rates

The plus sign corresponds to the growing root if one exists. In the food-limited range,
the root corresponding to the growing solution has an e-folding rate

(AS)

(since Og > ar). Thus we demonstrate exponential growth occurs in this case when
there is sufficient food and also that the growth rate is a linear function of the food
concentration when C is small enough. Note also the necessity for sufficient food in
order to have positive growth; this also appears in (A4) as the requirement that

for (}' to be positive. When Og is large compared to Or' we recover the same
requirement as that set by (AS).

time
mass in body tissue
mass in storage
tissue growth (mass/time)
changes in storage (mass/time)
gut mass
weight of organism
initial weight

W

Symbols used in the models (listed by Section)

Section 2
t
T
S
TS
DS
G



spatial coordinate
"standard" part of diffusivity
"biological" part of diffusivity
"biological" diffusivity in case KJ = const. (distance2

/

time)

ingestion (mass/time)
assimilation (mass/time)
egestion (mass/time)
respiration and excretion (mass/time)
encounter rate (number/time)
average foraging/filtering rate (volume/time)
mass of food arriving per unit time
food concentration (mass/volume)
average mass of a prey particle
mass of i'h food particle
gaussian
time of arrival of i'h particle
prey handling time
scale value for concentration (1 j.LgC/I)
encounter rate for predators of weight Wo in food con-

centration Co (number/time)
power for dependence of encounter on predator weight
probability for ingestion of a particle
maximum gut mass for an organism of weight Wo
power for increase in maximum gut mass with organism

weight
prey mass
probability density function for prey mass
ingestion rate for organisms with w = wo, G = 0, C = Co
(mass/time)
lower limit on prey mass
lower limit for a predator of weight Wo
fraction of food lost from gut by assimilation
rate of gut evacuation (lltime)
respiration/excretion rate for a predator of weight Wo

(mass/time)
power dependence of RE on weight
G/(w/wot
biomass
exponential growth coefficient (l/time)
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mean "biological" diffusivity (distance2/time)
amplitude of variable "biological" diffusivity (distance2

/

time)
left-moving biomass
right-moving biomass
stopped biomass
swimming speed (distance/time)
rate of turning (l/time)
rate of stopping (l/time)
rate of starting (l/time)
wavenumber (l/distance)
frequency (l/time)
mean part of growth rate g (1/time)
variable part of growth rate (l/time)
mean free path (distance)

spatial average mean growth rate (l/time)
spatially variable growth rate (l/time)
spatially variable "biological" diffusivity (distance2

/

time)
amplitude of variability in K' (distance2/time)
population growth rate (l/time)
biomass normalized by that existing in the absence of

prey patchiness
eigenfunction b (x, t )K2(X) exp (-at)
spatial variation in the eigenfunction
domain scale (periodicity) (distance)
proportionality between growth rate and prey concen-

tration (volume/mass/time)
space-time Fourier amplitude of prey concentration

(mass distance time/volume)
spatially varying part of prey concentration (mass/vol-

ume)

encounter rate in presence of turbulence (number of
prey/time)

prey swimming speed (distance/time)
predator swimming speed (distance/time)
encounter velocity associated with turbulence (dis-

tance/time)
prey biomass
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Kp physical eddy diffusivity for prey (distance2/time)

Kps reaggregation for prey (distance2/time)

Ks swimming diffusivity (distance2/time)
k] proportionality between swimming diffusivity and in-

verse encounter rate (distance2/time)

gl proportionality between growth rate and encounter
rate (l/prey number)

g2 constant growth rate term (l/time)
E kinetic energy dissipation rate (power/volume)
Euppcr KE dissipation i~ upper mixed layer

Elower KE dissipation in lower mixed layer
r eddy separation distance
UIO wind speed at 10 m

2m' depth of mixed layer
Section 6
N number in cohort
m(w) mortality rate (l/time)
g(w) growth rate (weight/time)
G growth coefficient for different cohorts (weight/time)
q(w) weight dependent part ofg (non dimensional)
Wo initial weight
w, weight required for recruitment
t

T
time of recruitment

R recruited number

No initial number
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