909 research outputs found

    The Solar Photospheric Nitrogen Abundance: Determination with 3D and 1D Model Atmospheres

    Full text link
    We present a new determination of the solar nitrogen abundance making use of 3D hydrodynamical modelling of the solar photosphere, which is more physically motivated than traditional static 1D models. We selected suitable atomic spectral lines, relying on equivalent width measurements already existing in the literature. For atmospheric modelling we used the co 5 bold 3D radiation hydrodynamics code. We investigated the influence of both deviations from local thermodynamic equilibrium (non-LTE effects) and photospheric inhomogeneities (granulation effects) on the resulting abundance. We also compared several atlases of solar flux and centre-disc intensity presently available. As a result of our analysis, the photospheric solar nitrogen abundance is A(N) = 7.86 +/- 0.12.Comment: 6 pages, 4 figure

    A physics-based life prediction methodology for thermal barrier coating systems

    Full text link
    A novel mechanistic approach is proposed for the prediction of the life of thermal barrier coating (TBC) systems. The life prediction methodology is based on a criterion linked directly to the dominant failure mechanism. It relies on a statistical treatment of the TBC's morphological characteristics, non-destructive stress measurements and on a continuum mechanics framework to quantify the stresses that promote the nucleation and growth of microcracks within the TBC. The last of these accounts for the effects of TBC constituents' elasto-visco-plastic properties, the stiffening of the ceramic due to sintering and the oxidation at the interface between the thermally insulating yttria stabilized zirconia (YSZ) layer and the metallic bond coat. The mechanistic approach is used to investigate the effects on TBC life of the properties and morphology of the top YSZ coating, metallic low-pressure plasma sprayed bond coat and the thermally grown oxide. Its calibration is based on TBC damage inferred from non-destructive fluorescence measurements using piezo-spectroscopy and on the numerically predicted local TBC stresses responsible for the initiation of such damage. The potential applicability of the methodology to other types of TBC coatings and thermal loading conditions is also discussed

    A study of the s-process in the carbon-rich post-AGB stars IRAS06530-0213 and IRAS08143-4406 on the basis of VLT-UVES spectra

    Full text link
    In an effort to extend the still limited sample of s-process enriched post-AGB stars, high-resolution, high signal-to-noise VLT+UVES spectra of the optical counterparts of the infrared sources IRAS06530-0213 and IRAS08143-4406 were analysed. The objects are moderately metal deficient by [Fe/H]=-0.5 and -0.4 respectively, carbon-rich and, above all, heavily s-process enhanced with a [ls/Fe] of 1.8 and 1.5 respectively. Especially the spectrum of IRAS06530-0213 is dominated by transitions of s-process species, and therefore resembling the spectrum of IRAS05341+0852, the most s-process enriched object known so far. The two objects are chemically very similar to the 21micron objects discussed in Van Winckel & Reyniers (2000). A homogeneous comparison with the results of these objects reveals that the relation between the third dredge-up efficiency and the neutron nucleosynthesis efficiency found for the 21micron objects, is further strengthened. On the other hand, a detailed comparison with the predictions of the latest AGB models indicates that the observed spread in nucleosynthesis efficiency is certainly intrinsic, and proves that different C-13 pockets are needed for stars with comparable mass and metallicity to explain their abundances.Comment: 14 pages, 10 figures, accepted for publication in A&A; Table 4 is available at ftp://ftp.ster.kuleuven.ac.be/dist/maarten/filescds/ pending upload to CD

    Can Extra Mixing in RGB and AGB Stars Be Attributed to Magnetic Mechanisms?

    Get PDF
    It is known that there must be some weak form of transport (called cool bottom processing, or CBP) acting in low mass RGB and AGB stars, adding nuclei, newly produced near the hydrogen-burning shell, to the convective envelope. We assume that this extra-mixing originates in a stellar dynamo operated by the differential rotation below the envelope, maintaining toroidal magnetic fields near the hydrogen-burning shell. We use a phenomenological approach to the buoyancy of magnetic flux tubes, assuming that they induce matter circulation as needed by CBP models. This establishes requirements on the fields necessary to transport material from zones where some nuclear burning takes place, through the radiative layer, and into the convective envelope. Magnetic field strengths are determined by the transport rates needed by CBP for the model stellar structure of a star of initially 1.5 solar mass, in both the AGB and RGB phases. The field required for the AGB star in the processing zone is B_0 ~ 5x10^6 G; at the base of the convective envelope this yields an intensity B_E < 10^4 G (approximately). For the RGB case, B_0 ~ 5x10^4 to 4x10^5 G, and the corresponding B_E are ~ 450 to 3500 G. These results are consistent with existing observations on AGB stars. They also hint at the basis for high field sources in some planetary nebulae and the very large fields found in some white dwarfs. It is concluded that transport by magnetic buoyancy should be considered as a possible mechanism for extra mixing through the radiative zone, as is required by both stellar observations and the extensive isotopic data on circumstellar condensates found in meteorites.Comment: 26 pages, 4 figures, accepted by Astrophysical Journa

    s-Process Nucleosynthesis in Carbon Stars

    Get PDF
    We present the first detailed and homogeneous analysis of the s-element content in Galactic carbon stars of N-type. Abundances of Sr,Y, Zr (low-mass s-elements, or ls) and of Ba, La, Nd, Sm and Ce (high-mass s-elements, hs) are derived using the spectral synthesis technique from high-resolution spectra. The N-stars analyzed are of nearly solar metallicity and show moderate s-element enhancements, similar to those found in S stars, but smaller than those found in the only previous similar study (Utsumi 1985), and also smaller than those found in supergiant post-AGB stars. This is in agreement with the present understanding of the envelope s-element enrichment in giant stars, which is increasing along the spectral sequence M-->MS-->S-->SC-->C during the AGB phase. We compare the observational data with recent ss-process nucleosynthesis models for different metallicities and stellar masses. Good agreement is obtained between low mass AGB star models (M < 3 M_o) and s-elements observations. In low mass AGB stars, the 13C(alpha, n)16O reaction is the main source of neutrons for the s-process; a moderate spread, however, must exist in the abundance of 13C that is burnt in different stars. By combining information deriving from the detection of Tc, the infrared colours and the theoretical relations between stellar mass, metallicity and the final C/O ratio, we conclude that most (or maybe all) of the N-stars studied in this work are intrinsic, thermally-pulsing AGB stars; their abundances are the consequence of the operation of third dredge-up and are not to be ascribed to mass transfer in binary systems.Comment: 31 pages, 10 figures, 6 tables. Accepted in Ap

    Galactic chemical evolution of heavy elements: from Barium to Europium

    Get PDF
    We follow the chemical evolution of the Galaxy for elements from Ba to Eu, using an evolutionary model suitable to reproduce a large set of Galactic (local and non local) and extragalactic constraints. Input stellar yields for neutron-rich nuclei have been separated into their s-process and r-process components. The production of s-process elements in thermally pulsing asymptotic giant branch stars of low mass proceeds from the combined operation of two neutron sources: the dominant reaction 13C(alpha,n)16O, which releases neutrons in radiative conditions during the interpulse phase, and the reaction 22Ne(alpha,n)25Mg, marginally activated during thermal instabilities. The resulting s-process distribution is strongly dependent on the stellar metallicity. For the standard model discussed in this paper, it shows a sharp production of the Ba-peak elements around Z = Z_sun/4. Concerning the r-process yields, we assume that the production of r-nuclei is a primary process occurring in stars near the lowest mass limit for Type II supernova progenitors. The r-contribution to each nucleus is computed as the difference between its solar abundance and its s-contribution given by the Galactic chemical evolution model at the epoch of the solar system formation. We compare our results with spectroscopic abundances of elements from Ba to Eu at various metallicities (mainly from F and G stars) showing that the observed trends can be understood in the light of the present knowledge of neutron capture nucleosynthesis. Finally, we discuss a number of emerging features that deserve further scrutiny.Comment: 34 pages, 13 figures. accepted by Ap

    Σp\Sigma^- p emission rates in KK^- absorptions at rest on 6^6Li, 7^7Li, 9^{9}Be, 13^{13}C and 16^{16}O

    Full text link
    An experimental study of the KstopAΣpAK^-_{stop}A\rightarrow \Sigma^- p A' reaction on A=6A=^6Li, 7^7Li, 9^9Be, 13^{13}C and 16^{16}O pp-shell nuclei is presented. The data were collected by the FINUDA spectrometer operating at the DAΦ\PhiNE ϕ\phi-factory (LNF-INFN, Italy). Emission rates for the reaction in the mentioned nuclei are measured and compared with the few existing data. The spectra of several observables are discussed; indications of Quasi-Free absorptions by a (np)(np) pair embedded in the AA nucleus can be obtained from the study of the missing mass distributions.Comment: Version accepted by PR

    Speaker-independent emotion recognition exploiting a psychologically-inspired binary cascade classification schema

    No full text
    In this paper, a psychologically-inspired binary cascade classification schema is proposed for speech emotion recognition. Performance is enhanced because commonly confused pairs of emotions are distinguishable from one another. Extracted features are related to statistics of pitch, formants, and energy contours, as well as spectrum, cepstrum, perceptual and temporal features, autocorrelation, MPEG-7 descriptors, Fujisakis model parameters, voice quality, jitter, and shimmer. Selected features are fed as input to K nearest neighborhood classifier and to support vector machines. Two kernels are tested for the latter: Linear and Gaussian radial basis function. The recently proposed speaker-independent experimental protocol is tested on the Berlin emotional speech database for each gender separately. The best emotion recognition accuracy, achieved by support vector machines with linear kernel, equals 87.7%, outperforming state-of-the-art approaches. Statistical analysis is first carried out with respect to the classifiers error rates and then to evaluate the information expressed by the classifiers confusion matrices. © Springer Science+Business Media, LLC 2011

    Production of Λ6^{6}_{\Lambda}H and Λ7^{7}_{\Lambda}H with the (Kstop^{-}_{stop},π+\pi^+) reaction

    Full text link
    The production of neutron rich Λ\Lambda-hypernuclei via the (KstopK^-_stop,π+\pi^+) reaction has been studied using data collected with the FINUDA spectrometer at the DAΦ\PhiNE ϕ\phi-factory (LNF). The analysis of the inclusive π+\pi^+ momentum spectra is presented and an upper limit for the production of Λ6^6_\LambdaH and Λ7^7_\LambdaH from 6^6Li and 7^7Li, is assessed for the first time.Comment: 11 pages, 3 figures. Accepted for publication in PL
    corecore