909 research outputs found
The Solar Photospheric Nitrogen Abundance: Determination with 3D and 1D Model Atmospheres
We present a new determination of the solar nitrogen abundance making use of
3D hydrodynamical modelling of the solar photosphere, which is more physically
motivated than traditional static 1D models. We selected suitable atomic
spectral lines, relying on equivalent width measurements already existing in
the literature. For atmospheric modelling we used the co 5 bold 3D radiation
hydrodynamics code. We investigated the influence of both deviations from local
thermodynamic equilibrium (non-LTE effects) and photospheric inhomogeneities
(granulation effects) on the resulting abundance. We also compared several
atlases of solar flux and centre-disc intensity presently available. As a
result of our analysis, the photospheric solar nitrogen abundance is A(N) =
7.86 +/- 0.12.Comment: 6 pages, 4 figure
A physics-based life prediction methodology for thermal barrier coating systems
A novel mechanistic approach is proposed for the prediction of the life of
thermal barrier coating (TBC) systems. The life prediction methodology is based
on a criterion linked directly to the dominant failure mechanism. It relies on
a statistical treatment of the TBC's morphological characteristics,
non-destructive stress measurements and on a continuum mechanics framework to
quantify the stresses that promote the nucleation and growth of microcracks
within the TBC. The last of these accounts for the effects of TBC constituents'
elasto-visco-plastic properties, the stiffening of the ceramic due to sintering
and the oxidation at the interface between the thermally insulating yttria
stabilized zirconia (YSZ) layer and the metallic bond coat. The mechanistic
approach is used to investigate the effects on TBC life of the properties and
morphology of the top YSZ coating, metallic low-pressure plasma sprayed bond
coat and the thermally grown oxide. Its calibration is based on TBC damage
inferred from non-destructive fluorescence measurements using
piezo-spectroscopy and on the numerically predicted local TBC stresses
responsible for the initiation of such damage. The potential applicability of
the methodology to other types of TBC coatings and thermal loading conditions
is also discussed
A study of the s-process in the carbon-rich post-AGB stars IRAS06530-0213 and IRAS08143-4406 on the basis of VLT-UVES spectra
In an effort to extend the still limited sample of s-process enriched
post-AGB stars, high-resolution, high signal-to-noise VLT+UVES spectra of the
optical counterparts of the infrared sources IRAS06530-0213 and IRAS08143-4406
were analysed. The objects are moderately metal deficient by [Fe/H]=-0.5 and
-0.4 respectively, carbon-rich and, above all, heavily s-process enhanced with
a [ls/Fe] of 1.8 and 1.5 respectively. Especially the spectrum of
IRAS06530-0213 is dominated by transitions of s-process species, and therefore
resembling the spectrum of IRAS05341+0852, the most s-process enriched object
known so far. The two objects are chemically very similar to the 21micron
objects discussed in Van Winckel & Reyniers (2000). A homogeneous comparison
with the results of these objects reveals that the relation between the third
dredge-up efficiency and the neutron nucleosynthesis efficiency found for the
21micron objects, is further strengthened. On the other hand, a detailed
comparison with the predictions of the latest AGB models indicates that the
observed spread in nucleosynthesis efficiency is certainly intrinsic, and
proves that different C-13 pockets are needed for stars with comparable mass
and metallicity to explain their abundances.Comment: 14 pages, 10 figures, accepted for publication in A&A; Table 4 is
available at ftp://ftp.ster.kuleuven.ac.be/dist/maarten/filescds/ pending
upload to CD
Can Extra Mixing in RGB and AGB Stars Be Attributed to Magnetic Mechanisms?
It is known that there must be some weak form of transport (called cool
bottom processing, or CBP) acting in low mass RGB and AGB stars, adding nuclei,
newly produced near the hydrogen-burning shell, to the convective envelope. We
assume that this extra-mixing originates in a stellar dynamo operated by the
differential rotation below the envelope, maintaining toroidal magnetic fields
near the hydrogen-burning shell. We use a phenomenological approach to the
buoyancy of magnetic flux tubes, assuming that they induce matter circulation
as needed by CBP models. This establishes requirements on the fields necessary
to transport material from zones where some nuclear burning takes place,
through the radiative layer, and into the convective envelope. Magnetic field
strengths are determined by the transport rates needed by CBP for the model
stellar structure of a star of initially 1.5 solar mass, in both the AGB and
RGB phases. The field required for the AGB star in the processing zone is B_0 ~
5x10^6 G; at the base of the convective envelope this yields an intensity B_E <
10^4 G (approximately). For the RGB case, B_0 ~ 5x10^4 to 4x10^5 G, and the
corresponding B_E are ~ 450 to 3500 G. These results are consistent with
existing observations on AGB stars. They also hint at the basis for high field
sources in some planetary nebulae and the very large fields found in some white
dwarfs. It is concluded that transport by magnetic buoyancy should be
considered as a possible mechanism for extra mixing through the radiative zone,
as is required by both stellar observations and the extensive isotopic data on
circumstellar condensates found in meteorites.Comment: 26 pages, 4 figures, accepted by Astrophysical Journa
s-Process Nucleosynthesis in Carbon Stars
We present the first detailed and homogeneous analysis of the s-element
content in Galactic carbon stars of N-type. Abundances of Sr,Y, Zr (low-mass
s-elements, or ls) and of Ba, La, Nd, Sm and Ce (high-mass s-elements, hs) are
derived using the spectral synthesis technique from high-resolution spectra.
The N-stars analyzed are of nearly solar metallicity and show moderate
s-element enhancements, similar to those found in S stars, but smaller than
those found in the only previous similar study (Utsumi 1985), and also smaller
than those found in supergiant post-AGB stars. This is in agreement with the
present understanding of the envelope s-element enrichment in giant stars,
which is increasing along the spectral sequence M-->MS-->S-->SC-->C during the
AGB phase. We compare the observational data with recent -process
nucleosynthesis models for different metallicities and stellar masses. Good
agreement is obtained between low mass AGB star models (M < 3 M_o) and
s-elements observations. In low mass AGB stars, the 13C(alpha, n)16O reaction
is the main source of neutrons for the s-process; a moderate spread, however,
must exist in the abundance of 13C that is burnt in different stars. By
combining information deriving from the detection of Tc, the infrared colours
and the theoretical relations between stellar mass, metallicity and the final
C/O ratio, we conclude that most (or maybe all) of the N-stars studied in this
work are intrinsic, thermally-pulsing AGB stars; their abundances are the
consequence of the operation of third dredge-up and are not to be ascribed to
mass transfer in binary systems.Comment: 31 pages, 10 figures, 6 tables. Accepted in Ap
Galactic chemical evolution of heavy elements: from Barium to Europium
We follow the chemical evolution of the Galaxy for elements from Ba to Eu,
using an evolutionary model suitable to reproduce a large set of Galactic
(local and non local) and extragalactic constraints. Input stellar yields for
neutron-rich nuclei have been separated into their s-process and r-process
components. The production of s-process elements in thermally pulsing
asymptotic giant branch stars of low mass proceeds from the combined operation
of two neutron sources: the dominant reaction 13C(alpha,n)16O, which releases
neutrons in radiative conditions during the interpulse phase, and the reaction
22Ne(alpha,n)25Mg, marginally activated during thermal instabilities. The
resulting s-process distribution is strongly dependent on the stellar
metallicity. For the standard model discussed in this paper, it shows a sharp
production of the Ba-peak elements around Z = Z_sun/4. Concerning the r-process
yields, we assume that the production of r-nuclei is a primary process
occurring in stars near the lowest mass limit for Type II supernova
progenitors. The r-contribution to each nucleus is computed as the difference
between its solar abundance and its s-contribution given by the Galactic
chemical evolution model at the epoch of the solar system formation. We compare
our results with spectroscopic abundances of elements from Ba to Eu at various
metallicities (mainly from F and G stars) showing that the observed trends can
be understood in the light of the present knowledge of neutron capture
nucleosynthesis. Finally, we discuss a number of emerging features that deserve
further scrutiny.Comment: 34 pages, 13 figures. accepted by Ap
emission rates in absorptions at rest on Li, Li, Be, C and O
An experimental study of the reaction
on Li, Li, Be, C and O -shell nuclei is
presented. The data were collected by the FINUDA spectrometer operating at the
DANE -factory (LNF-INFN, Italy). Emission rates for the reaction in
the mentioned nuclei are measured and compared with the few existing data. The
spectra of several observables are discussed; indications of Quasi-Free
absorptions by a pair embedded in the nucleus can be obtained from
the study of the missing mass distributions.Comment: Version accepted by PR
Speaker-independent emotion recognition exploiting a psychologically-inspired binary cascade classification schema
In this paper, a psychologically-inspired binary cascade classification schema is proposed for speech emotion recognition. Performance is enhanced because commonly confused pairs of emotions are distinguishable from one another. Extracted features are related to statistics of pitch, formants, and energy contours, as well as spectrum, cepstrum, perceptual and temporal features, autocorrelation, MPEG-7 descriptors, Fujisakis model parameters, voice quality, jitter, and shimmer. Selected features are fed as input to K nearest neighborhood classifier and to support vector machines. Two kernels are tested for the latter: Linear and Gaussian radial basis function. The recently proposed speaker-independent experimental protocol is tested on the Berlin emotional speech database for each gender separately. The best emotion recognition accuracy, achieved by support vector machines with linear kernel, equals 87.7%, outperforming state-of-the-art approaches. Statistical analysis is first carried out with respect to the classifiers error rates and then to evaluate the information expressed by the classifiers confusion matrices. © Springer Science+Business Media, LLC 2011
Production of H and H with the (K,) reaction
The production of neutron rich -hypernuclei via the
(,) reaction has been studied using data collected with the
FINUDA spectrometer at the DANE -factory (LNF). The analysis of the
inclusive momentum spectra is presented and an upper limit for the
production of H and H from Li and Li, is
assessed for the first time.Comment: 11 pages, 3 figures. Accepted for publication in PL
- …