338 research outputs found

    Solar limb darkening function and solar diameter with eclipses observations

    Full text link
    We introduce a new method to perform high resolution astrometry of the solar diameter from the ground, through the observations of eclipses. A discussion of the solar diameter and its variations is linked to the Limb Darkening Function (LDF) using the luminosity evolution of a Baily's Bead and the profile of the lunar limb available from satellite data. The inflexion point of the LDF is defined as the solar limb. The method proposed is applied for the videos of the eclipse in January, 15, 2010 recorded by Richard Nugent in Uganda and Andreas Tegtmeier in India. An upper limit for the inflexion point position has been set for that eclipse.Comment: 3 pages, 2 figures. Proceedings of the Fourth French-Chinese meeting on Solar Physics Understanding Solar Activity: Advances and Challenges, 15 - 18 November, 2011 Nice, Franc

    Basal autophagy is involved in the degradation of the ERAD component EDEM1

    Get PDF
    Abstract.: Little is known about the fate of machinery proteins of the protein quality control and endoplasmic reticulum(ER)-associated degradation (ERAD). We investigated the degradation of the ERAD component EDEM1, which directs overexpressed misfolded glycoproteins to degradation. Endogenous EDEM1 was studied since EDEM1 overexpression not only resulted in inappropriate occurrence throughout the ER but also caused cytotoxic effects. Proteasome inhibitors had no effect on the clearance of endogenous EDEM1 in non-starved cells. However, EDEM1 could be detected by immunocytochemistry in autophagosomes and biochemically in LC3 immuno-purified autophagosomes. Furthermore, influencing the lysosome-autophagy pathway by vinblastine or pepstatin A/E64d and inhibiting autophagosome formation by 3-methyladenine or ATGs short interfering RNA knockdown stabilized EDEM1. Autophagic degradation involved removal of cytosolic Triton X-100-insoluble deglycosylated EDEM1, but not of EDEM1-containing ER cisternae. Our studies demonstrate that endogenous EDEM1 in cells not stressed by the expression of a transgenic misfolded protein reaches the cytosol and is degraded by basal autophag

    The costs of preventing and treating chagas disease in Colombia

    Get PDF
    Background: The objective of this study is to report the costs of Chagas disease in Colombia, in terms of vector disease control programmes and the costs of providing care to chronic Chagas disease patients with cardiomyopathy. Methods: Data were collected from Colombia in 2004. A retrospective review of costs for vector control programmes carried out in rural areas included 3,084 houses surveyed for infestation with triatomine bugs and 3,305 houses sprayed with insecticide. A total of 63 patient records from 3 different hospitals were selected for a retrospective review of resource use. Consensus methodology with local experts was used to estimate care seeking behaviour and to complement observed data on utilisation. Findings: The mean cost per house per entomological survey was 4.4(inUS4.4 (in US of 2004), whereas the mean cost of spraying a house with insecticide was 27.Themaincostdriverofsprayingwasthepriceoftheinsecticide,whichvariedgreatly.TreatmentofachronicChagasdiseasepatientcostsbetween27. The main cost driver of spraying was the price of the insecticide, which varied greatly. Treatment of a chronic Chagas disease patient costs between 46.4 and 7,981peryearinColombia,dependingonseverityandthelevelofcareused.Combiningcostandutilisationestimatestheexpectedcostoftreatmentperpatientyearis7,981 per year in Colombia, depending on severity and the level of care used. Combining cost and utilisation estimates the expected cost of treatment per patient-year is 1,028, whereas lifetime costs averaged $11,619 per patient. Chronic Chagas disease patients have limited access to healthcare, with an estimated 22% of patients never seeking care. Conclusion: Chagas disease is a preventable condition that affects mostly poor populations living in rural areas. The mean costs of surveying houses for infestation and spraying infested houses were low in comparison to other studies and in line with treatment costs. Care seeking behaviour and the type of insurance affiliation seem to play a role in the facilities and type of care that patients use, thus raising concerns about equitable access to care. Preventing Chagas disease in Colombia would be cost-effective and could contribute to prevent inequalities in health and healthcare.Wellcome Trus

    Feasibility, drug safety, and effectiveness of etiological treatment programs for Chagas disease in Honduras, Guatemala, and Bolivia: 10-year experience of Médecins Sans Frontières

    Get PDF
    BACKGROUND: Chagas disease (American trypanosomiasis) is a zoonotic or anthropozoonotic disease caused by the parasite Trypanosoma cruzi. Predominantly affecting populations in poor areas of Latin America, medical care for this neglected disease is often lacking. Médecins Sans Frontières/Doctors Without Borders (MSF) has provided diagnostic and treatment services for Chagas disease since 1999. This report describes 10 years of field experience in four MSF programs in Honduras, Guatemala, and Bolivia, focusing on feasibility protocols, safety of drug therapy, and treatment effectiveness. METHODOLOGY: From 1999 to 2008, MSF provided free diagnosis, etiological treatment, and follow-up care for patients <18 years of age seropositive for T. cruzi in Yoro, Honduras (1999-2002); Olopa, Guatemala (2003-2006); Entre Ríos, Bolivia (2002-2006); and Sucre, Bolivia (2005-2008). Essential program components guaranteeing feasibility of implementation were information, education, and communication (IEC) at the community and family level; vector control; health staff training; screening and diagnosis; treatment and compliance, including family-based strategies for early detection of adverse events; and logistics. Chagas disease diagnosis was confirmed by testing blood samples using two different diagnostic tests. T. cruzi-positive patients were treated with benznidazole as first-line treatment, with appropriate counseling, consent, and active participation from parents or guardians for daily administration of the drug, early detection of adverse events, and treatment withdrawal, when necessary. Weekly follow-up was conducted, with adverse events recorded to assess drug safety. Evaluations of serological conversion were carried out to measure treatment effectiveness. Vector control, entomological surveillance, and health education activities were carried out in all projects with close interaction with national and regional programs. RESULTS: Total numbers of children and adolescents tested for T. cruzi in Yoro, Olopa, Entre Ríos, and Sucre were 24,471, 8,927, 7,613, and 19,400, respectively. Of these, 232 (0.9%), 124 (1.4%), 1,475 (19.4%), and 1,145 (5.9%) patients, respectively, were diagnosed as seropositive. Patients were treated with benznidazole, and early findings of seroconversion varied widely between the Central and South American programs: 87.1% and 58.1% at 18 months post-treatment in Yoro and Olopa, respectively; 5.4% by up to 60 months in Entre Ríos; and 0% at an average of 18 months in Sucre. Benznidazole-related adverse events were observed in 50.2% and 50.8% of all patients treated in Yoro and Olopa, respectively, and 25.6% and 37.9% of patients in Entre Ríos and Sucre, respectively. Most adverse events were mild and manageable. No deaths occurred in the treatment population. CONCLUSIONS: These results demonstrate the feasibility of implementing Chagas disease diagnosis and treatment programs in resource-limited settings, including remote rural areas, while addressing the limitations associated with drug-related adverse events. The variability in apparent treatment effectiveness may reflect differences in patient and parasite populations, and illustrates the limitations of current treatments and measures of efficacy. New treatments with improved safety profiles, pediatric formulations of existing and new drugs, and a faster, reliable test of cure are all urgently needed

    Evaluation of Spatially Targeted Strategies to Control Non-Domiciliated Triatoma dimidiata Vector of Chagas Disease

    Get PDF
    Chagas disease is one of the most important parasitic diseases in Latin America. Since the 1980's, many national and international initiatives have contributed to eliminate vectors developing inside human domiciles. Today's challenge is to control vectors that are non-adapted to the human domicile, but still able to transmit the parasite through regular short stay in the houses. Here, we assess the potential of different control strategies applied in specific spatial patterns using a mathematical model that reproduces the dynamic of dispersion of such ‘non-domiciliated’ vectors within a village of the Yucatan Peninsula, Mexico. We show that no single strategy applied in the periphery of the village, where the insects are more abundant, provides satisfying protection to the whole village. However, combining the use of insect screens in houses at the periphery of the village (to simultaneously fight insects dispersing from the garden and the forest), and the cleaning of the peri-domicile areas of the centre of the village (where sylvatic insects are absent), would provide a cost-effective control. This type of spatially mixed strategy offers a promising way to reduce the cost associated with the repeated interventions required to control non-domiciliated vectors that permanently attempt to infest houses

    Fixation of osteochondral fragments in the human knee using Meniscus Arrows®

    Get PDF
    The aim of this study is to compare the hold in bone of Meniscus Arrows® and Smart Nails®, followed by the report of the results of the clinical application of Meniscus Arrows® as fixation devices. First, pull-out tests were performed to analyse the holdfast of both nails in bone. Statistical analysis showed no significant difference; therefore, the thinner Meniscus Arrow® was chosen as fixation device in the patient series of two patients with a symptomatic Osteochondritis dissecans fragment and three patients with an osteochondral fracture of a femur condyle. The cartilage margins were glued with Tissuecoll®. All fragments consolidated. Second look arthroscopy in three patients showed fixed fragments with stable, congruent cartilage edges. At an average follow-up period of 5 years no pain, effusion, locking, restricted range of motion or signs of osteoarthritis were reported. Based on the results of the pull-out tests and available clinical studies, Meniscus Arrows® and Smart Nails® are both likely to perform adequately as fixation devices in the treatment of Osteochondritis dissecans and osteochondral fractures in the knee. They both provide the advantage of one stage surgery. However, based on their smaller diameter, the Meniscus Arrows® should be preferred for this indication

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    The Measurement of Solar Diameter and Limb Darkening Function with the Eclipse Observations

    Full text link
    The Total Solar Irradiance varies over a solar cycle of 11 years and maybe over cycles with longer period. Is the solar diameter variable over time too? We introduce a new method to perform high resolution astrometry of the solar diameter from the ground, through the observations of eclipses by reconsidering the definition of the solar edge. A discussion of the solar diameter and its variations must be linked to the Limb Darkening Function (LDF) using the luminosity evolution of a Baily's Bead and the profile of the lunar limb available from satellite data. This approach unifies the definition of solar edge with LDF inflection point for eclipses and drift-scan or heliometric methods. The method proposed is applied for the videos of the eclipse in 15 January 2010 recorded in Uganda and in India. The result shows light at least 0.85 arcsec beyond the inflection point, and this suggests to reconsider the evaluations of the historical eclipses made with naked eye.Comment: 16 pages, 11 figures, accepted in Solar Physics. arXiv admin note: text overlap with arXiv:astro-ph/0601109 by other author

    The Potential Economic Value of a Trypanosoma cruzi (Chagas Disease) Vaccine in Latin America

    Get PDF
    The substantial burden of Chagas disease, especially in Latin America, and the limitations of currently available treatment and control strategies have motivated the development of a Trypanosoma cruzi (T. cruzi) vaccine. Evaluating a vaccine's potential economic value early in its development can answer important questions while the vaccine's key characteristics (e.g., vaccine efficacy targets, price points, and target population) can still be altered. This can assist vaccine scientists, manufacturers, policy makers, and other decision makers in the development and implementation of the vaccine. We developed a computational economic model to determine the cost-effectiveness of introducing a T. cruzi vaccine in Latin America. Our results showed vaccination to be very cost-effective, in many cases providing both cost savings and health benefits, even at low infection risk and vaccine efficacy. Moreover, our study suggests that a vaccine may actually “pay for itself”, as even a relatively higher priced vaccine will generate net cost savings for a purchaser (e.g., a country's ministry of health). These findings support continued investments in and efforts toward the development of a human T. cruzi vaccine
    corecore