230 research outputs found

    The activated torsion oscillation magnetometer

    Full text link
    The activated torsion oscillation magnetometer exploits the mechanical resonance of a cantilever beam, driven by the torque exerted on the sample by an ac field applied perpendicularly to the film plane. We describe a model for the cantilever dynamics which leads to the calculation of the cantilever dynamic profile and allows the mechanical sensitivity of the instrument to be expressed in terms of the minimum electronically detectable displacement. We have developed a capacitance detector of small oscillations which is able to detect displacements of the order of 0.1 nm. We show that sensitivities of the order of 0.5(10-11 Am2 can be in principle achieved. We will subsequently describe the main features of the ATOM prototype which we have built and tested, with particular attention to the design solutions which have been adopted in order to reduce the effects of parasitic vibrations due either to acoustic noise, originating from the ac field coil, or to eddy currents in the capacitor electrodes. The instrument is mounted in a continuous flow cryostat and can work in the 4.2-300 K temperature range. Finally, we will show that our experimental set-up has a second mode of operation, named Torsion Induction Magnetometer (TIM).Comment: Invited Talk at the Moscow International Symposium on Magnetism, 2002 to appear in the J. Mag. Mag. Mat Revised versio

    Geologically constrained evolutionary geomechanical modelling of diapir and basin evolution: a case study from the Tarfaya basin, West African coast

    Get PDF
    We systematically incorporate burial history, sea floor geometry and tectonic loads from a sequential kinematic restoration model into a 2D evolutionary geomechanical model that simulates the formation of the Sandia salt diapir, Tarfaya basin, NW African Coast. We use a poro-elastoplastic description for the sediment behaviour and a viscoplastic description for the salt. Sedimentation is coupled with salt flow and regional shortening to determine the sediment porosity and strength and to capture the interaction between salt and sediments. We find that temporal and spatial variation in sedimentation rate is a key control on the kinematic evolution of the salt system. Incorporation of sedimentation rates from the kinematic restoration at a location east of Sandia leads to a final geomechanical model geometry very similar to that observed in seismic reflection data. We also find that changes in the variation of shortening rates can significantly affect the present-day stress state above salt. Overall, incorporating kinematic restoration data into evolutionary models provides insights into the key parameters that control the evolution of geologic systems. Furthermore, it enables more realistic evolutionary geomechanical models, which, in turn, provide insights into sediment stress and porosity

    Anisotropy of ultra-thin ferromagnetic films and the spin reorientation transition

    Full text link
    The influence of uniaxial anisotropy and the dipole interaction on the direction of the magnetization of ultra-thin ferromagnetic films in the ground-state is studied. The ground-state energy can be expressed in terms of anisotropy constants which are calculated in detail as function of the system parameters and the film thickness. In particular non-collinear spin arrangements are taken into account. Conditions for the appearance of a spin reorientation transition are given and analytic results for the width of the canted phase and its shift in applied magnetic fields associated with this transition are derived.Comment: 6 pages, RevTeX

    Growth modes of Fe(110) revisited: a contribution of self-assembly to magnetic materials

    Full text link
    We have revisited the epitaxial growth modes of Fe on W(110) and Mo(110), and propose an overview or our contribution to the field. We show that the Stranski-Krastanov growth mode, recognized for a long time in these systems, is in fact characterized by a bimodal distribution of islands for growth temperature in the range 250-700°C. We observe firstly compact islands whose shape is determined by Wulff-Kaischev's theorem, secondly thin and flat islands that display a preferred height, ie independant from nominal thickness and deposition procedure (1.4nm for Mo, and 5.5nm for W on the average). We used this effect to fabricate self-organized arrays of nanometers-thick stripes by step decoration. Self-assembled nano-ties are also obtained for nucleation of the flat islands on Mo at fairly high temperature, ie 800°C. Finally, using interfacial layers and solid solutions we separate two effects on the preferred height, first that of the interfacial energy, second that of the continuously-varying lattice parameter of the growth surface.Comment: 49 pages. Invited topical review for J. Phys.: Condens. Matte

    Observation of thickness dependence of magnetic surface anisotropy in ultrathin amorphous films.

    Get PDF
    Copyright © 1990 The American Physical SocietyFerromagnetic resonance (FMR) and SQUID magnetometry measurements have been made on multilayers of amorphous Fe70B30/Ag. The dependence of the magnetic surface anisotropy constant Ks on the magnetic layer thickness 2L has been determined in the range 1.6 Å16.5 Å, but decreases monotonically towards zero as 2L decreases from 16.5 Å towards zero. The FMR results can be well described by a theory developed for ultrathin amorphous ferromagnetic layers

    Exploring emergent properties in cellular homeostasis using OnGuard to model K+ and other ion transport in guard cells

    Get PDF
    It is widely recognized that the nature and characteristics of transport across eukaryotic membranes are so complex as to defy intuitive understanding. In these circumstances, quantitative mathematical modeling is an essential tool, both to integrate detailed knowledge of individual transporters and to extract the properties emergent from their interactions. As the first, fully integrated and quantitative modeling environment for the study of ion transport dynamics in a plant cell, OnGuard offers a unique tool for exploring homeostatic properties emerging from the interactions of ion transport, both at the plasma membrane and tonoplast in the guard cell. OnGuard has already yielded detail sufficient to guide phenotypic and mutational studies, and it represents a key step toward ‘reverse engineering’ of stomatal guard cell physiology, based on rational design and testing in simulation, to improve water use efficiency and carbon assimilation. Its construction from the HoTSig libraries enables translation of the software to other cell types, including growing root hairs and pollen. The problems inherent to transport are nonetheless challenging, and are compounded for those unfamiliar with conceptual ‘mindset’ of the modeler. Here we set out guidelines for the use of OnGuard and outline a standardized approach that will enable users to advance quickly to its application both in the classroom and laboratory. We also highlight the uncanny and emergent property of OnGuard models to reproduce the ‘communication’ evident between the plasma membrane and tonoplast of the guard cell

    Influence of uncorrelated overlayers on the magnetism in thin itinerant-electron films

    Full text link
    The influence of uncorrelated (nonmagnetic) overlayers on the magnetic properties of thin itinerant-electron films is investigated within the single-band Hubbard model. The Coulomb correlation between the electrons in the ferromagnetic layers is treated by using the spectral density approach (SDA). It is found that the presence of nonmagnetic layers has a strong effect on the magnetic properties of thin films. The Curie temperatures of very thin films are modified by the uncorrelated overlayers. The quasiparticle density of states is used to analyze the results. In addition, the coupling between the ferromagnetic layers and the nonmagnetic layers is discussed in detail. The coupling depends on the band occupation of the nonmagnetic layers, while it is almost independent of the number of the nonmagnetic layers. The induced polarization in the nonmagnetic layers shows a long-range decreasing oscillatory behavior and it depends on the coupling between ferromagnetic and nonmagnetic layers.Comment: 9 pages, RevTex, 6 figures, for related work see: http://orion.physik.hu-berlin.d

    Schwinger boson theory of anisotropic ferromagnetic ultrathin films

    Full text link
    Ferromagnetic thin films with magnetic single-ion anisotropies are studied within the framework of Schwinger bosonization of a quantum Heisenberg model. Two alternative bosonizations are discussed. We show that qualitatively correct results are obtained even at the mean-field level of the theory, similar to Schwinger boson results for other magnetic systems. In particular, the Mermin-Wagner theorem is satisfied: a spontaneous magnetization at finite temperatures is not found if the ground state of the anisotropic system exhibits a continuous degeneracy. We calculate the magnetization and effective anisotropies as functions of exchange interaction, magnetic anisotropies, external magnetic field, and temperature for arbitrary values of the spin quantum number. Magnetic reorientation transitions and effective anisotropies are discussed. The results obtained by Schwinger boson mean-field theory are compared with the many-body Green's function technique.Comment: 14 pages, including 7 EPS figures, minor changes, final version as publishe

    A Fast Na+/Ca2+-Based Action Potential in a Marine Diatom

    Get PDF
    BACKGROUND:Electrical impulses in animals play essential roles in co-ordinating an array of physiological functions including movement, secretion, environmental sensing and development. Underpinning many of these electrical signals is a fast Na+-based action potential that has been fully characterised only in cells associated with the neuromuscular systems of multicellular animals. Such rapid action potentials are thought to have evolved with the first metazoans, with cnidarians being the earliest representatives. The present study demonstrates that a unicellular protist, the marine diatom Odontella sinensis, can also generate a fast Na+/Ca2+ based action potential that has remarkably similar biophysical and pharmacological properties to invertebrates and vertebrate cardiac and skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS:The kinetic, ionic and pharmacological properties of the rapid diatom action potential were examined using single electrode current and voltage clamp techniques. Overall, the characteristics of the fast diatom currents most closely resemble those of vertebrate and invertebrate muscle Na+/Ca2+ currents. CONCLUSIONS/SIGNIFICANCE:This is the first demonstration of voltage-activated Na+ channels and the capacity to generate fast Na+-based action potentials in a unicellular photosynthetic organism. The biophysical and pharmacological characteristics together with the presence of a voltage activated Na+/Ca2+ channel homologue in the recently sequenced genome of the diatom Thalassiosira pseudonana, provides direct evidence supporting the hypothesis that this rapid signalling mechanism arose in ancestral unicellular eukaryotes and has been retained in at least two phylogenetically distant lineages of eukaryotes; opisthokonts and the stramenopiles. The functional role of the fast animal-like action potential in diatoms remains to be elucidated but is likely involved in rapid environmental sensing of these widespread and successful marine protists
    • …
    corecore