2,101 research outputs found
A Topos Foundation for Theories of Physics: IV. Categories of Systems
This paper is the fourth in a series whose goal is to develop a fundamentally
new way of building theories of physics. The motivation comes from a desire to
address certain deep issues that arise in the quantum theory of gravity. Our
basic contention is that constructing a theory of physics is equivalent to
finding a representation in a topos of a certain formal language that is
attached to the system. Classical physics arises when the topos is the category
of sets. Other types of theory employ a different topos. The previous papers in
this series are concerned with implementing this programme for a single system.
In the present paper, we turn to considering a collection of systems: in
particular, we are interested in the relation between the topos representation
for a composite system, and the representations for its constituents. We also
study this problem for the disjoint sum of two systems. Our approach to these
matters is to construct a category of systems and to find a topos
representation of the entire category.Comment: 38 pages, no figure
A Topos Foundation for Theories of Physics: II. Daseinisation and the Liberation of Quantum Theory
This paper is the second in a series whose goal is to develop a fundamentally
new way of constructing theories of physics. The motivation comes from a desire
to address certain deep issues that arise when contemplating quantum theories
of space and time. Our basic contention is that constructing a theory of
physics is equivalent to finding a representation in a topos of a certain
formal language that is attached to the system. Classical physics arises when
the topos is the category of sets. Other types of theory employ a different
topos. In this paper, we study in depth the topos representation of the
propositional language, PL(S), for the case of quantum theory. In doing so, we
make a direct link with, and clarify, the earlier work on applying topos theory
to quantum physics. The key step is a process we term `daseinisation' by which
a projection operator is mapped to a sub-object of the spectral presheaf--the
topos quantum analogue of a classical state space. In the second part of the
paper we change gear with the introduction of the more sophisticated local
language L(S). From this point forward, throughout the rest of the series of
papers, our attention will be devoted almost entirely to this language. In the
present paper, we use L(S) to study `truth objects' in the topos. These are
objects in the topos that play the role of states: a necessary development as
the spectral presheaf has no global elements, and hence there are no
microstates in the sense of classical physics. Truth objects therefore play a
crucial role in our formalism.Comment: 34 pages, no figure
A Topological Study of Contextuality and Modality in Quantum Mechanics
Kochen-Specker theorem rules out the non-contextual assignment of values to
physical magnitudes. Here we enrich the usual orthomodular structure of quantum
mechanical propositions with modal operators. This enlargement allows to refer
consistently to actual and possible properties of the system. By means of a
topological argument, more precisely in terms of the existence of sections of
sheaves, we give an extended version of Kochen-Specker theorem over this new
structure. This allows us to prove that contextuality remains a central feature
even in the enriched propositional system.Comment: 10 pages, no figures, submitted to I. J. Th. Phy
Antibody responses to nasopharyngeal carriage of Streptococcus pneumoniae in adults: A longitudinal household study
Background. Natural immunity to Streptococcus pneumoniae is thought to be induced by exposure to S. pneumoniae or cross-reactive antigens. No longitudinal studies of carriage of and immune responses to S. pneumoniae have been conducted using sophisticated immunological laboratory techniques.Methods. We enrolled 121 families with young children into this study. Nasopharyngeal (NP) swabs were collected monthly for 10 months from all family members and were cultured in a standard fashion. Cultured S. pneumoniae isolates were serotyped. At the beginning (month 0) and end (month 10) of the study, venous blood was collected from family members 118 years old. Serotype-specific antipolysaccharide immunoglobulin G (IgG) and functional antibody and antibodies to pneumolysin, pneumococcal surface protein A (PspA), and pneumococcal surface antigen A (PsaA) were measured in paired serum samples.Results. Levels of anticapsular IgG increased significantly after carriage of serotypes 9V, 14, 18C, 19F, and 23F by an individual or family member. For serotype 14, a higher level of anticapsular IgG at the beginning of the study was associated with reduced odds of carriage (P = .0006). There was a small (similar to 20%) but significant increase in titers of antibodies to PsaA and pneumolysin but no change in titers of antibody to PspA.Conclusions. Adults respond to NP carriage by mounting anticapsular and weak antiprotein antibody responses, and naturally induced anticapsular IgG can prevent carriage
Contextual logic for quantum systems
In this work we build a quantum logic that allows us to refer to physical
magnitudes pertaining to different contexts from a fixed one without the
contradictions with quantum mechanics expressed in no-go theorems. This logic
arises from considering a sheaf over a topological space associated to the
Boolean sublattices of the ortholattice of closed subspaces of the Hilbert
space of the physical system. Differently to standard quantum logics, the
contextual logic maintains a distributive lattice structure and a good
definition of implication as a residue of the conjunction.Comment: 16 pages, no figure
A logic road from special relativity to general relativity
We present a streamlined axiom system of special relativity in first-order
logic. From this axiom system we "derive" an axiom system of general relativity
in two natural steps. We will also see how the axioms of special relativity
transform into those of general relativity. This way we hope to make general
relativity more accessible for the non-specialist
Topos-Theoretic Extension of a Modal Interpretation of Quantum Mechanics
This paper deals with topos-theoretic truth-value valuations of quantum
propositions. Concretely, a mathematical framework of a specific type of modal
approach is extended to the topos theory, and further, structures of the
obtained truth-value valuations are investigated. What is taken up is the modal
approach based on a determinate lattice \Dcal(e,R), which is a sublattice of
the lattice \Lcal of all quantum propositions and is determined by a quantum
state and a preferred determinate observable . Topos-theoretic extension
is made in the functor category \Sets^{\CcalR} of which base category
\CcalR is determined by . Each true atom, which determines truth values,
true or false, of all propositions in \Dcal(e,R), generates also a
multi-valued valuation function of which domain and range are \Lcal and a
Heyting algebra given by the subobject classifier in \Sets^{\CcalR},
respectively. All true propositions in \Dcal(e,R) are assigned the top
element of the Heyting algebra by the valuation function. False propositions
including the null proposition are, however, assigned values larger than the
bottom element. This defect can be removed by use of a subobject
semi-classifier. Furthermore, in order to treat all possible determinate
observables in a unified framework, another valuations are constructed in the
functor category \Sets^{\Ccal}. Here, the base category \Ccal includes all
\CcalR's as subcategories. Although \Sets^{\Ccal} has a structure
apparently different from \Sets^{\CcalR}, a subobject semi-classifier of
\Sets^{\Ccal} gives valuations completely equivalent to those in
\Sets^{\CcalR}'s.Comment: LaTeX2
A Topos Perspective on State-Vector Reduction
A preliminary investigation is made of possible applications in quantum
theory of the topos formed by the collection of all -sets, where is a
monoid. Earlier results on topos aspects of quantum theory can be rederived in
this way. However, the formalism also suggests a new way of constructing a
`neo-realist' interpretation of quantum theory in which the truth values of
propositions are determined by the actions of the monoid of strings of finite
projection operators. By these means, a novel topos perspective is gained on
the concept of state-vector reduction
Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling
The recently discovered exoplanet Gl581d is extremely close to the outer edge
of its system's habitable zone, which has led to much speculation on its
possible climate. We have performed a range of simulations to assess whether,
given simple combinations of chemically stable greenhouse gases, the planet
could sustain liquid water on its surface. For best estimates of the surface
gravity, surface albedo and cloud coverage, we find that less than 10 bars of
CO2 is sufficient to maintain a global mean temperature above the melting point
of water. Furthermore, even with the most conservative choices of these
parameters, we calculate temperatures above the water melting point for CO2
partial pressures greater than about 40 bar. However, we note that as Gl581d is
probably in a tidally resonant orbit, further simulations in 3D are required to
test whether such atmospheric conditions are stable against the collapse of CO2
on the surface.Comment: 9 pages, 11 figures. Accepted for publication in Astronomy &
Astrophysic
Topos Theory and Consistent Histories: The Internal Logic of the Set of all Consistent Sets
A major problem in the consistent-histories approach to quantum theory is
contending with the potentially large number of consistent sets of history
propositions. One possibility is to find a scheme in which a unique set is
selected in some way. However, in this paper we consider the alternative
approach in which all consistent sets are kept, leading to a type of `many
world-views' picture of the quantum theory. It is shown that a natural way of
handling this situation is to employ the theory of varying sets (presheafs) on
the space \B of all Boolean subalgebras of the orthoalgebra \UP of history
propositions. This approach automatically includes the feature whereby
probabilistic predictions are meaningful only in the context of a consistent
set of history propositions. More strikingly, it leads to a picture in which
the `truth values', or `semantic values' of such contextual predictions are not
just two-valued (\ie true and false) but instead lie in a larger logical
algebra---a Heyting algebra---whose structure is determined by the space \B
of Boolean subalgebras of \UP.Comment: 28 pages, LaTe
- …
