research

Topos-Theoretic Extension of a Modal Interpretation of Quantum Mechanics

Abstract

This paper deals with topos-theoretic truth-value valuations of quantum propositions. Concretely, a mathematical framework of a specific type of modal approach is extended to the topos theory, and further, structures of the obtained truth-value valuations are investigated. What is taken up is the modal approach based on a determinate lattice \Dcal(e,R), which is a sublattice of the lattice \Lcal of all quantum propositions and is determined by a quantum state ee and a preferred determinate observable RR. Topos-theoretic extension is made in the functor category \Sets^{\CcalR} of which base category \CcalR is determined by RR. Each true atom, which determines truth values, true or false, of all propositions in \Dcal(e,R), generates also a multi-valued valuation function of which domain and range are \Lcal and a Heyting algebra given by the subobject classifier in \Sets^{\CcalR}, respectively. All true propositions in \Dcal(e,R) are assigned the top element of the Heyting algebra by the valuation function. False propositions including the null proposition are, however, assigned values larger than the bottom element. This defect can be removed by use of a subobject semi-classifier. Furthermore, in order to treat all possible determinate observables in a unified framework, another valuations are constructed in the functor category \Sets^{\Ccal}. Here, the base category \Ccal includes all \CcalR's as subcategories. Although \Sets^{\Ccal} has a structure apparently different from \Sets^{\CcalR}, a subobject semi-classifier of \Sets^{\Ccal} gives valuations completely equivalent to those in \Sets^{\CcalR}'s.Comment: LaTeX2

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019