A major problem in the consistent-histories approach to quantum theory is
contending with the potentially large number of consistent sets of history
propositions. One possibility is to find a scheme in which a unique set is
selected in some way. However, in this paper we consider the alternative
approach in which all consistent sets are kept, leading to a type of `many
world-views' picture of the quantum theory. It is shown that a natural way of
handling this situation is to employ the theory of varying sets (presheafs) on
the space \B of all Boolean subalgebras of the orthoalgebra \UP of history
propositions. This approach automatically includes the feature whereby
probabilistic predictions are meaningful only in the context of a consistent
set of history propositions. More strikingly, it leads to a picture in which
the `truth values', or `semantic values' of such contextual predictions are not
just two-valued (\ie true and false) but instead lie in a larger logical
algebra---a Heyting algebra---whose structure is determined by the space \B
of Boolean subalgebras of \UP.Comment: 28 pages, LaTe