Abstract

A major problem in the consistent-histories approach to quantum theory is contending with the potentially large number of consistent sets of history propositions. One possibility is to find a scheme in which a unique set is selected in some way. However, in this paper we consider the alternative approach in which all consistent sets are kept, leading to a type of `many world-views' picture of the quantum theory. It is shown that a natural way of handling this situation is to employ the theory of varying sets (presheafs) on the space \B of all Boolean subalgebras of the orthoalgebra \UP of history propositions. This approach automatically includes the feature whereby probabilistic predictions are meaningful only in the context of a consistent set of history propositions. More strikingly, it leads to a picture in which the `truth values', or `semantic values' of such contextual predictions are not just two-valued (\ie true and false) but instead lie in a larger logical algebra---a Heyting algebra---whose structure is determined by the space \B of Boolean subalgebras of \UP.Comment: 28 pages, LaTe

    Similar works

    Available Versions

    Last time updated on 02/01/2020