552 research outputs found

    Clues on the evolution of the Carina dwarf spheroidal galaxy from the color distribution of its red giant stars

    Get PDF
    The thin red giant branch (RGB) of the Carina dwarf spheroidal galaxy appears at first sight quite puzzling and seemingly in contrast with the presence of several distinct bursts of star formation. In this Letter, we provide a measurement of the color spread of red giant stars in Carina based on new BVI wide-field observations, and model the width of the RGB by means of synthetic color-magnitude diagrams. The measured color spread, Sigma{V-I}=0.021 +/- 0.005, is quite naturally accounted for by the star-formation history of the galaxy. The thin RGB appears to be essentially related to the limited age range of its dominant stellar populations, with no need for a metallicity dispersion at a given age. This result is relatively robust with respect to changes in the assumed age-metallicity relation, as long as the mean metallicity over the galaxy lifetime matches the observed value ([Fe/H] = -1.91 +/- 0.12 after correction for the age effects). This analysis of photometric data also sets some constraints on the chemical evolution of Carina by indicating that the chemical abundance of the interstellar medium in Carina remained low throughout each episode of star formation even though these episodes occurred over many Gyr.Comment: 4 pages, 3 figures, accepted for publication in the Astrophysical Journal Letter

    Machine Learning Nucleation Collective Variables with Graph Neural Networks

    Get PDF
    The efficient calculation of nucleation collective variables (CVs) is one of the main limitations to the application of enhanced sampling methods to the investigation of nucleation processes in realistic environments. Here we discuss the development of a graph-based model for the approximation of nucleation CVs that enables orders-of-magnitude gains in computational efficiency in the on-the-fly evaluation of nucleation CVs. By performing simulations on a nucleating colloidal system mimicking a multistep nucleation process from solution, we assess the model's efficiency in both postprocessing and on-the-fly biasing of nucleation trajectories with pulling, umbrella sampling, and metadynamics simulations. Moreover, we probe and discuss the transferability of graph-based models of nucleation CVs across systems using the model of a CV based on sixth-order Steinhardt parameters trained on a colloidal system to drive the nucleation of crystalline copper from its melt. Our approach is general and potentially transferable to more complex systems as well as to different CVs

    HST observations of the Local Group dwarf galaxy Leo I

    Full text link
    We present deep HST F555W (V) and F814W (I) observations of a central field in the Local Group dwarf spheroidal (dSph) galaxy Leo I. The resulting color-magnitude diagram (CMD) reaches I \simeq 26 and reveals the oldest ~10-15 Gyr old turnoffs. Nevertheless, a horizontal branch is not obvious in the CMD. Given the low metallicity of the galaxy, this likely indicates that the first substantial star formation in the galaxy may have been somehow delayed in Leo I in comparison with the other dSph satellites of the Milky Way. The subgiant region is well and uniformly populated from the oldest turnoffs up to the 1 Gyr old turnoff, indicating that star formation has proceeded in a continuous way, with possible variations in intensity but no big gaps between successive bursts, over the galaxy's lifetime. The structure of the red-clump of core He-burning stars is consistent with the large amount of intermediate-age population inferred from the main sequence and the subgiant region. In spite of the lack of gas in Leo I, the CMD clearly shows star formation continuing until 1 Gyr ago and possibly until a few hundred Myrs ago in the central part of the galaxy.Comment: 26 pages with 8 figures (fig 2 not available electronically). To be published in ApJ, April 1 1999 (vol.514, #2

    Cardioprotective effects of sodium glucose cotransporter 2 inhibition in angiotensin II-dependent hypertension are mediated by the local reduction of sympathetic activity and inflammation

    Get PDF
    The cardioprotective effects of sodium glucose cotrasponter 2 (SGLT2) inhibitors seem to be independent from the effects on glycemic control, through little-known mechanisms. In this study, we investigate whether the cardioprotective effects of empagliflozin, a SGLT2 inhibitor, may be associated with myocardial sympathetic activity and inflammatory cell infiltration in an experimental model of angiotensin II-dependent hypertension. Angiotensin II (Ang II), Ang II plus Empagliflozin, physiological saline, or physiological saline plus empagliflozin were administered to Sprague Dawley rats for two weeks. Blood pressure was measured by plethysmographic method. Myocardial hypertrophy and fibrosis were analysed by histomorphometry, and inflammatory cell infiltration and tyrosine hydroxylase expression, implemented as a marker of sympathetic activity, were evaluated by immunohistochemistry. Ang II increased blood pressure, myocardial hypertrophy, fibrosis, inflammatory infiltrates and tyrosine hydroxylase expression, as compared to the control group. Empagliflozin administration prevented the development of myocardial hypertrophy, fibrosis, inflammatory infiltrates and tyrosine hydroxylase overexpression in Ang II-treated rats, without affecting blood glucose and the Ang II-dependent increase in blood pressure. These data demonstrate that the cardioprotective effects of SGLT2 inhibition in Ang II-dependent hypertension may result from the myocardial reduction of sympathetic activity and inflammation and are independent of the modulation of blood pressure and blood glucose levels

    Axions and the Strong CP Problem

    Full text link
    Current upper bounds of the neutron electric dipole moment constrain the physically observable quantum chromodynamic (QCD) vacuum angle θˉ1011|\bar\theta| \lesssim 10^{-11}. Since QCD explains vast experimental data from the 100 MeV scale to the TeV scale, it is better to explain this smallness of θˉ|\bar\theta| in the QCD framework, which is the strong \Ca\Pa problem. Now, there exist two plausible solutions to this problem, one of which leads to the existence of the very light axion. The axion decay constant window, $10^9\ {\gev}\lesssim F_a\lesssim 10^{12} \gevfora for a {\cal O}(1)initialmisalignmentangle initial misalignment angle \theta_1,hasbeenobtainedbyastrophysicalandcosmologicaldata.For, has been obtained by astrophysical and cosmological data. For F_a\gtrsim 10^{12}GeVwith GeV with \theta_1<{\cal O}(1)$, axions may constitute a significant fraction of dark matter of the universe. The supersymmetrized axion solution of the strong \Ca\Pa problem introduces its superpartner the axino which might have affected the universe evolution significantly. Here, we review the very light axion (theory, supersymmetrization, and models) with the most recent particle, astrophysical and cosmological data, and present prospects for its discovery.Comment: 47 pages with 32 figure

    Multiresistant-MRSA tricuspid valve infective endocarditis with ancient osteomyelitis locus

    Get PDF
    BACKGROUND: Methicillin-resistant S. aureus (MRSA) with low susceptibility to glycopeptides is uncommon. CASE PRESENTATION: The case of a 50-year-old non-drug addict patient presenting with tricuspid valve infective endocarditis (IE) by MRSA resistant to vancomycin and linezolid is presented. There was response only to quinupristin/dalfopristin. He had a motorcycling accident four years before undergoing right above-the-knee amputation and orthopaedic fixation of the left limb. There were multiple episodes of left MRSA-osteomyelitis controlled after surgery and vancomycin therapy. MRSA isolated from the blood at the time of IE presented with the same profile than the isolated four years earlier. Sequential treatment with teicoplanin-cotrimoxazole and Linezolid associated to vancomycin – rifampicin – cotrimoxazole had no improvement. Infection was controlled after 28 days of therapy with quinupristin/dalfopristin. CONCLUSION: The literature presents only a few cases of MRSA IE not susceptible to glycopeptides in not drug addicted patients. This case shows the comparison of a highly-resistant MRSA after previous S. aureus osteomyelitis treated with glycopeptides. This is the first description of successful treatment of resistant-MRSA IE of the tricuspid valve complicated by multiple pulmonary septic infarction with quinupristin/dalfopristi

    Thermal hopping and retrapping of a Brownian particle in the tilted periodic potential of a NbN/MgO/NbN Josephson junction

    Full text link
    We report on the occurrence of multiple hopping and retrapping of a Brownian particle in a tilted washboard potential. The escape dynamic has been studied experimentally by measuring the switching current distributions as a function of temperature in a moderately damped NbN/MgO/NbN Josephson junction. At low temperatures the second moment of the distribution increases in agreement with calculations based on Kramers thermal activation regime. After a turn-over temperature T*, the shape of the distributions starts changing and width decreases with temperature. We analyze the data through fit of the switching probability and Monte Carlo simulations and we find a good agreement with a model based on a multiple retrapping process

    Increased chromosomal radiosensitivity in asymptomatic carriers of a heterozygous BRCA1 mutation

    Get PDF
    Background: Breast cancer risk increases drastically in individuals carrying a germline BRCA1 mutation. The exposure to ionizing radiation for diagnostic or therapeutic purposes of BRCA1 mutation carriers is counterintuitive, since BRCA1 is active in the DNA damage response pathway. The aim of this study was to investigate whether healthy BRCA1 mutations carriers demonstrate an increased radiosensitivity compared with healthy individuals. Methods: We defined a novel radiosensitivity indicator (RIND) based on two endpoints measured by the G2 micronucleus assay, reflecting defects in DNA repair and G2 arrest capacity after exposure to doses of 2 or 4 Gy. We investigated if a correlation between the RIND score and nonsense-mediated decay (NMD) could be established. Results: We found significantly increased radiosensitivity in the cohort of healthy BRCA1 mutation carriers compared with healthy controls. In addition, our analysis showed a significantly different distribution over the RIND scores (p = 0.034, Fisher’s exact test) for healthy BRCA1 mutation carriers compared with non-carriers: 72 % of mutation carriers showed a radiosensitive phenotype (RIND score 1–4), whereas 72 % of the healthy volunteers showed no radiosensitivity (RIND score 0). Furthermore, 28 % of BRCA1 mutation carriers had a RIND score of 3 or 4 (not observed in control subjects). The radiosensitive phenotype was similar for relatives within several families, but not for unrelated individuals carrying the same mutation. The median RIND score was higher in patients with a mutation leading to a premature termination codon (PTC) located in the central part of the gene than in patients with a germline mutation in the 5′ end of the gene. Conclusions: We show that BRCA1 mutations are associated with a radiosensitive phenotype related to a compromised DNA repair and G2 arrest capacity after exposure to either 2 or 4 Gy. Our study confirms that haploinsufficiency is the mechanism involved in radiosensitivity in patients with a PTC allele, but it suggests that further research is needed to evaluate alternative mechanisms for mutations not subjected to NMD
    corecore