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ABSTRACT: The efficient calculation of nucleation collective
variables (CVs) is one of the main limitations to the application of
enhanced sampling methods to the investigation of nucleation
processes in realistic environments. Here we discuss the develop-
ment of a graph-based model for the approximation of nucleation
CVs that enables orders-of-magnitude gains in computational
efficiency in the on-the-fly evaluation of nucleation CVs. By
performing simulations on a nucleating colloidal system mimicking
a multistep nucleation process from solution, we assess the model’s
efficiency in both postprocessing and on-the-fly biasing of
nucleation trajectories with pulling, umbrella sampling, and
metadynamics simulations. Moreover, we probe and discuss the transferability of graph-based models of nucleation CVs across
systems using the model of a CV based on sixth-order Steinhardt parameters trained on a colloidal system to drive the nucleation of
crystalline copper from its melt. Our approach is general and potentially transferable to more complex systems as well as to different
CVs.

■ INTRODUCTION
Nucleation, the formation of the first stable embryo of a new
phase from an out-of-equilibrium mother phase, lies at the
heart of material synthesis in both nature and industry.
Nucleation, in fact, controls the structural characteristics of the
product material and determines the kinetics of the formation
of different polymorphs of the same compound.1−4 As such,
modeling nucleation to predict its characteristic rate and to
understand its molecular mechanisms in realistic conditions
remains one of the grand challenges in the field of molecular
modeling and simulation.5−9 Moreover, under the effect of
realistic thermodynamic driving forces, nucleation is a
paradigmatic example of a rare event occurring over time
scales that far exceed those that can be accessed by brute-force
molecular dynamics simulations.7−10 Consequently, molecular
simulations aimed at probing nucleation mechanisms at the
atomic scale are unfeasible with brute-force simulations and
require the use of enhanced sampling methods and more
complex collective variables (CVs).
Enhanced sampling simulations often require tracking the

reaction progress along a low-dimensional set of CVs that,
ideally, approximate the reaction coordinate11 associated with
the nucleation process. On-the-fly calculation of CVs is a
requirement of most unseeded enhanced sampling simulation
methods aimed at studying nucleation, where the formation of
a stable nucleus is modeled starting from a homogeneous and
supersaturated solution rather than a supersaturated solution
seeded with crystal nuclei as is commonly done in seeded
methods. The unseeded methods include biased enhanced

sampling methods as well as path sampling methods such as
forward flux sampling, which relies on the calculation of CVs to
track the progress of a rare transition.12−14 Biased enhanced
sampling methods utilize biasing potentials, or forces, which
are functions of the CVs that are added to the system’s
Hamiltonian to facilitate the exploration of configuration space.
Such methods, including umbrella sampling,15 metadynam-
ics,16,17 adaptive biasing force,18 and adiabatic bias molecular
dynamics19 with all their variants,20 require the calculation of
CVs and their gradient to propagate the biased dynamics and
accelerate the frequency of rare events.
CVs are functions of the microscopic coordinates of the

system capable of distinguishing the relevant macrostates
involved in the activated transformation, and thus, they
approximate the reaction coordinate associated with the
transformation. In contrast with other domains, such as
conformational dynamics, ligand binding, and protein folding,
where the computational overheads associated with the
calculation of CVs are usually minimal, in simulations of
nucleation, effective CVs are inherently more complex and
computationally expensive. The computational cost associated
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with nucleation CVs is related to the fact that, regardless of the
underlying principles used to mathematically formulate
nucleation CVs, the process of assembly emerges from the
collective evolution of all the growth units (atoms, particles, or
molecules) simulated. As a consequence, CVs are typically
formulated as combinations of descriptors of the local atomic
environment of the growth units.
To be physically meaningful, such combinations are required

to be invariant to the roto-translations of the system as well as
invariant to the permutation of chemically equivalent growth
units.7,21,22 Hence, most CVs are constructed by combining
roto-translationally invariant local symmetry functions via
permutationally invariant operators that are exclusively a
function of the system coordinates. A characteristic reference
model for the mathematical structure of such CVs is portrayed
by the Steinhardt order parameters,23 a prototypical example of
nucleation CVs. In Steinhardt order parameters, rotationally
invariant spherical harmonics are computed on the basis of a
set of distances between growth units representing a local
environment, and in their original formulation, functions of the
spherical harmonics are combined in a permutationally
invariant average, yielding a CV able to describe the state of
a system undergoing crystal nucleation.
Starting from the Steinhardt order parameters, many

different CVs for the study of nucleation and, more generally,
of crystallization have been proposed,7,22 significantly expand-
ing the scope and ability to describe crystalline systems from
atomic lattices to more complex molecular assemblies.21,24−27

Despite the differences in the mathematical principles
leveraged to characterize the local environments, the structure
by which invariances to roto-translation and permutation are
achieved is common to the vast majority of nucleation CVs.
Similar to the problem of characterizing local environments via
symmetry functions to train machine learning potentials
(MLPs), the computational bottleneck in the efficient

computation of nucleation CVs is the scalable calculation of
the local symmetry functions28 needed to ensure roto-
translational invariance.
In this work, we have developed a graph-based model able to

efficiently approximate nucleation CVs, bypassing the need for
an on-the-fly computation of symmetry functions and their
gradient in favor of a much more efficient evaluation of a
function of the molecular graph constructed from the atomic
coordinates. We show that this approach allows for an efficient
size and system transferability and enables order-of-magnitude
efficiency gains compared to those of the direct evaluation of
classical CVs. It should be noted that our aim in this work is to
provide a computationally efficient alternative to the direct
calculation of nucleation CVs. The development, validation,
and optimization of CVs for the study of nucleation processes,
which remains a very active area of research, is not part of the
aim of this work. Nevertheless, we note that many approaches
focused on the identification of better CVs for the description
of complex transitions are based on the combination of large
numbers of order parameters. This applies to both data-driven
assessments29,30 and optimization strategies31 of nucleation
reaction coordinates, which would greatly benefit from the
deployment of faster models able to approximate expensive
CVs, thus enabling studies involving a larger (and more
physically significant) number of growth units.
The model architecture and several functionalities to

facilitate the convenient construction of these approximations
are implemented in the NNucleate Python library, developed
to accompany this work. This library can be installed from
https://github.com/mme-ucl/NNucleate, and its documenta-
tion is hosted under https://flofega.github.io/NNucleate/
html/index.html.

Figure 1. A GNN model for learning nucleation CVs. This figure shows a schematic depiction of the method developed. In the first step, the
molecular/atomic graph is constructed using a neighbor list algorithm. The Cartesian coordinates contained in each node are embedded into a
higher-dimensional representation via the row-wise application of a multilayer perceptron. Then each row is repeatedly updated with its
neighborhood information as indicated by the edges of the graph. After the user-defined amount of edge embeddings, all the local predictions are
pooled via summation and mapped from the m-dimensional internal representation to a one-dimensional final prediction.
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■ THEORY
The graph-based architecture to approximate nucleation CVs
in atomistic and molecular systems is graphically summarized
in Figure 1. A graph neural network (GNN) is a function
acting upon a graph, as defined by a set of nodes and edges

= ( , ). Since such a graph is defined only by the relative
relations between nodes, it is invariant to any edge-preserving
permutation of the nodes. Furthermore, any function acting on
the graph would inherit this invariance. This property makes a
GNN desirable for the calculation of nucleation CVs, as any
approximator for any global descriptor of an atomistic system
must be invariant to the permutation of chemically equivalent
particles.
Here, each node xi contains the set of Cartesian coordinates

describing particle i. In general, a function f evaluating
properties of the set of nodes X makes a graph-level CV
prediction by pooling node-level predictions in a permutation-
ally invariant manner:

=f X x( ) ( ( ))i (1)

where ⊕ is a permutationally invariant pooling function (e.g.,
sum or max), ψ is a node-level predictor, and ϕ is a graph-level
predictor, where predictor refers to a learnable mathematical
function that maps the node inputs to node-level predictions
and the pooled node-level predictions to a global prediction,
respectively. The latter function is implemented as a multilayer
perceptron and referred to in Figure 1 as the graph decoder.
To consider the connectivity of the graph, when making

predictions, the node-level predictor ψ should depend on the
central node as well as its edges in the so-called edge-
embedding step. However, a function making such a prediction
has to again be permutationally invariant to the order in which
the neighboring nodes are considered. This is achieved again
by pooling the predictions on individual neighbors:

=f cX x r( ) , ( )i
j
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Here the indices N and E differentiate between node and edge-
level predictions, respectively. ψN is implemented as a
multilayer perceptron that maps the vector resulting from
stacking the node vector and the edge contribution back to the
dimensionality of the node vector. ψE is another multilayer
perceptron that acts on the relative distance vector rij = xj − xi,
mapping it to an edge-level prediction of the same
dimensionality. When making these design choices together
with constant edge weights cij, the resulting function is often
referred to as a graph-convolutional layer.32,33 i is the
neighborhood of node i as defined by its undirected edges:

= { }j i j j i: ( , ) or ( , )i (3)

In this work, the edge weights are assumed to be constant and
set to 1. The reason is that, on the one hand, the
computational cost of this approach should be minimized for
the application in mind. On the other hand, this step is justified
by the fact that a strong bias about the importance of a
particular node is already introduced through the way the
graph is constructed.
With this approach, any graph-level prediction is based on

node-level predictions, which consider the nodes in their
immediate neighborhood. However, this framework allows for
the inclusion of longer-range information by repeating the

node-embedding step multiple times, where after the first edge
embedding (see Figure 1) the internal representation hi0
contains information about its immediately adjacent nodes.
Repeating this process k times will embed information from
nodes that are k edges removed from node i, resulting in the
internal representation hik:
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=f X h( ) ( )i (6)

This approach, in many ways, mirrors the mathematical
structure of the analytical CV. The model predicts local
contributions based on pairwise neighbor interactions and
pools them into a permutationally invariant final prediction.
This structural similarity can be further highlighted by
rewriting the equation for the CV n(Q6) (see Methods)
with a style and notation mirroring that of eq 2, as indicated by
OP(X), representing a general order parameter as a function of
the coordinates of the system X:

= [ { | } ]jX x xOP( ) ( , )
i

i j iN
(7)

where

=
>

( )
1, if

0, otherwiseN
N

l
moo
noo (8)

and

= *
=

q i q j( ) ( )
j m

m mN
6

6

6 6
i (9)

where σ is a threshold for a characteristic degree of local order
and q6m(i) is the sixth-order Steinhardt parameter as defined in
Methods.
A key difference, however, is that the predictions of this

model are not E(3)-invariant. The model has to learn from
data how rotations and translations at the local level affect the
value of the global CV based on Cartesian coordinates. This
task is rendered more tractable by working in reduced
coordinate space and evaluating the edge-level prediction ψE
over the relative distance vector rij = xj − xi instead of the
absolute position of the neighbor. This step is key for the
objectives of the model, as it allows us to bypass the calculation
of expensive rotationally invariant descriptors of the local
environment, thus enabling significant gains in computational
efficiency over the direct calculation of CVs.
In fact, the rate-limiting step in the evaluation of the model

is the construction of the graph. There are different ways one
could construct the atomic graph, but the most efficient, under
the consideration of periodic boundary conditions, is to
construct the neighbor lists for each particle. Another
advantage of the neighbor list graph is that the resulting
hyperparameter, i.e., the cutoff radius, can be interpreted as the
radius of the first coordination shell. Thus, it is set to the
position of the first minimum of the radial distribution
function of the respective system throughout this work.
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One last problem with the model proposed in eq 2 is that
the node-level predictions are inherently subject to numerical
noise. This noise averages globally, allowing for accurate global
predictions. However, when the model is deployed in biased
simulations, issues may appear due to this noise. In fact, when
biasing with an analytical CV, the force is only applied to a set
of relevant atoms that have a non-null contribution to the CV,
whereas in the model CV, no force component is exactly zero,
even when particles have a null coordination number. This can
negatively affect the system’s dynamics when biasing with high
force constants or crossing high energy barriers with
metadynamics. This issue is remedied by setting the gradient
components corresponding to particles with no neighbors to
zero before passing them to the enhanced sampling code.

■ METHODS
All molecular dynamics simulations in this work are performed
in the canonical ensemble, tempered to 2T* with 421 particles
in a cubic box of length 92.83σ using LAMMPS.34 The
colloidal particles are modeled via a Derjaguin−Landau−
Verwey−Overbeek (DLVO) potential with a cutoff of 12.5σ.
Details of the potential, its expected thermodynamic behavior,
and additional simulation details are available in ref 30.
The CVs used to describe the nucleation mechanisms of the

colloidal system of interest are n and n(Q6). The variable n
describes the number of particles with a coordination number
ci larger than a threshold and thus counts the number of
particles in the dense liquid droplet that forms in the lead-up to
a nucleation event.35 The coordination number of particle i, ci,
is computed as

=
( )
( )

c
1

1
i

i j i

r d

r

l

r d

r

m

ij

ij

0

0

0

0 (10)

where rij = |rij| is the distance between particle i and its jth
neighbor. The parameters l, m, d0 and r0 determine the shape
of the switching function. Their exact values can be found in

ref 30 and in the PLUMED input files on PLUMED-NEST
(https://www.plumed-nest.org/, plumID:23.026).
The variable used to quantify the size of crystalline domains

in the system, n(Q6), counts the number of particles
characterized by a local Steinhardt parameter value Q6i
above a set threshold.23,36−38 The order parameter Q6i is
defined as

=
*

=Q
r q i q j

r
6

( ) ( ) ( )

( )i
j ij m m m

j ij

6
6

6 6

(11)

where σ(rij) is a switching function acting on the pairwise
distance rij and is equal to 1 inside the radius of the first
coordination shell of the central particle and smoothly decays
to 0 at 8 reduced distance units. The shape of the switching
function is implemented in PLUMED under the RATIONAL
keyword and is structurally identical to eq 10. q6m(i) is the
sixth-order Steinhardt parameter of particle i, defined as

=q i
r Y

r

r
( )

( ) ( )

( )m
j ij m ij

j ij
6

6

(12)

where Y6m(rij) is the mth component of a sixth-order spherical
harmonic. The complex norm q6m* (i)q6m(j) gives a measure of
how much the orientation of the coordination shell of particle j
matches that of the central particle i.
All machine learning models in this work were trained by

using the NNucleate package. This package is built on top of
PyTorch.39 It utilizes functionalities from the MDTraj40 and
MDAnalysis41,42 packages to train CVs, augment and manage
datasets, analyze models, and translate models into PLUMED-
readable CV files. These Python scripts are used as CVs
through the PLUMED2 fork PyCV.43 Converting the models
into a format supported by PyCV involves Alphabet’s Jax and
Flax packages, and the necessary gradients are obtained using
Jax’s autodifferentiation implementation.44,45

The model optimizations were performed using the mean-
square error metric, Adam optimizer, and typically a learning
rate of 1 × 10−3.46 The main hyperparameters of the model,
the number of latent dimensions and the number of graph

Figure 2. Learning invariances via brute-force data augmentation. (a) Performance of a model, expressed as mean square error (MSE), on a large
set of randomly roto-translated structures (yellow) as a function of the number of rotated structures used at each training step. (b) Performance of
a model on a large set of randomly permutated structures (yellow) as a function of the number of permutations used during each training step. In
both panels, the red and blue lines show the training and validation set performances, respectively.
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convolutional layers, were optimized using the asynchronous
hyperband (ASHA) procedure as implemented in Ray
Tune.47,48

■ RESULTS AND DISCUSSION
Is a GNN Model Really Necessary? The first thing to

consider when developing an approximation for a nucleation
CV is that the final approximation needs to respect the same
invariances as the underlying CV. Namely, the value of our
approximation needs to be invariant to the identity of the
particles in the cluster, the orientation of the cluster, and the
absolute position of the cluster in space. The most naive and
potentially most efficient solution to this problem is to start
with a multilayer perceptron that maps the Cartesian
coordinates of the system directly to an approximated CV
value. The assumption then would be that the model can learn
all of these invariances via “brute force” by just observing
enough training data. In a sense, that would shift the
computational cost from production to a training process
that has to be performed only once. Such neural networks are,
in theory, sufficiently powerful for this task and inexpensive to
evaluate. However, this type of neural network is not size-
transferable or applicable outside of its training domain.
Therefore, a more apt formulation of the training goal, rather
than learning the CV, would be learning to resolve all
degeneracies of the CV in Cartesian space within a given
training domain. This requires the model to learn the inherent
invariances of the CV from a sufficiently large dataset.
To test for this hypothesis, a model is trained on 80% of a

nucleating trajectory with 10,000 frames using a loss function
that evaluates the performance of a model on any given
training frame and also over a set number of randomly
generated roto-translated or permutated versions of that same
frame. The remaining 20% are set aside as a hold-out validation
set to monitor whether the model loses the ability to predict
the CV on the base trajectory. A test set is created out of a
large collection of randomly roto-translated frames. Figure 2
shows the performance of multiple models trained this way,
including in the loss function an increasing number of

evaluations over randomly roto-translated or permutated
configurations. Each model had three layers of 512, 258, and
128 nodes, respectively. If the model can learn the underlying
invariances, the expected behavior is to see the error over the
test set slowly converge with the hold-out set error for an
increasing number of loss function evaluations over roto-
translations or permutations. This behavior can clearly be seen
for the roto-translations (Figure 2a) but not for the
permutations (Figure 2b). The only discernible trend in the
permutations plot is the hold-out set error diverging with n
since each training step becomes more and more diluted.
This observation demonstrates that a brute-force approach

cannot efficiently learn all the invariances via a sufficiently large
dataset. The most obvious reason for this failure is the vast
number of possible permutations. For instance, in this
application, the number of possible ways of inputting the
421 particles is practically infinite. However, so is the number
of possible rotations that one can apply to any configuration. A
significant difference, though, is that any infinitesimal change
in rotation leads to an equivalent infinitesimal change in the
input vector of the multilayer perceptron. Therefore, the
hypersphere of possible quaternions corresponds to a smooth
orbit of points in configuration space,49 and the shape of this
orbit can be inferred from a limited number of data points. In
contrast, each possible permutation corresponds to its unique
input vector, with no differentiable path connecting them. This
implies that to create a neural network that behaves as if it
were permutationally invariant, one would need at least n! data
points, a dataset size that is practically unachievable for any
meaningful nucleation problem.
These results justify the switch to a more expensive,

inherently permutationally invariant model architecture based
on graph neural networks. Alternatively, one could replace the
Cartesian coordinates with a permutationally invariant
descriptor. However, a graph-based architecture has several
additional advantages; most notably, its structure mirrors the
evaluation of the analytical function that needs to be
approximated with a pooling of local contributions. This
locality of the model also makes it more data-efficient and

Figure 3. Enriching the dataset along poorly sampled transition regions. (a) Dataset (blue) generated from one initial trajectory (red) by restarting
67 short simulations from the configurations marked with yellow crosses until they reach one of the basins. (b) Performance of two representative
models trained on just the initial trajectory (top) and the extended set (bottom), evaluated on their respective training sets (left) and an
independent trajectory (right).
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Figure 4. Optimizing the GNN model hyperparameters. (a) Average model convergence, with one standard deviation, of models trained on
different datasets and different sets of hyperparameters. The different lines are labeled with the numbers of data points in the corresponding
datasets and whether the hyperparameters were optimized (ASHA) or not. (b) Scatter of model predictions against the labels on an independent
trajectory. The points are colored according to the training set of the corresponding model from (a).

Figure 5. Deploying a GNN model in biased simulations. (a) CV values for a nucleating trajectory obtained in a pulling simulation using a model
CV. The gray shading represents the training set of the GNN used in the simulation. (b) Scaling of the cost of performing 10k metadynamics steps
using the method presented in this work (NNucleate) with system size compared to performing the same metadynamics steps with the explicit
calculation of the CV in PLUMED. (c) Free energy profiles (reduced units) obtained with umbrella sampling on three systems of varying sizes. The
vertical lines indicate the critical nucleus sizes with their corresponding errors upon reweighting those free energy surfaces to the reference
collective variable. The critical nucleus size, as indicated by the position of the transition state, is estimated to be 0.76 ± 0.31 (218 particles), 0.62 ±
0.09 (421 particles), and 0.92 ± 0.35 (1091 particles). (d) CV values from a short pulling simulation in a separate system of 500 copper particles.
This showcases the model’s ability to induce crystallization in a system different from the one it was trained in.
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robust outside of its training domain. Moreover, a graph-based
architecture lends itself to be easily adapted to capture
additional complexity, if necessary.
Training of a GNN n(Q6) Approximator. Loss Function.

The goal is to train models that facilitate the simulation of
nucleation events by acting as CVs in the enhanced sampling
approaches. However, a cheap error metric is required to train
such a model to perform the loss minimization. Such an error
metric is necessarily just a proxy for the actual quality of the
model as a CV and should be considered as such. In this work,
the loss function used during training is the mean square error
(MSE).

Training Set. A baseline training set is constructed by
supplementing a nucleating trajectory of 10k frames with
additional transition state data from a committor analysis of
the system (32k frames in total) (see Figure 3). When
constructing a CV approximation for sampling rare events from
unbiased data, one has to deal with the fact that by definition
the transition state of interest will be underrepresented
compared to the metastable states. Here the training data are
supplemented by starting short bursts of simulations from
configurations in the transition region until they reach one of
the basins. This drastically improves the model’s accuracy in
this region of CV space, as shown in Figure 3b.
A model trained on this dataset (red) (see Figure 4b) is

capable of predicting n Q( 6)3 with almost perfect correlation
(Pearson correlation coefficient r > 0.99) on a completely
independent trajectory extracted from the ensemble of
transition paths characteristic of the nucleation problem at
hand. Importantly, the model shown does not misclassify a
single frame as crystalline >n Q( ( 6) 1)3 when it is not. This,
combined with the perfect correlation, makes the trained GNN
model a suitable candidate to be used as a CV.
Figure 4a shows that optimizing the hyperparameters and

massively expanding the dataset can improve the model
accuracy and reduce the training variance. However, Figure 4b
shows that most of the additional accuracy comes from
improving the model accuracy at high values of n Q( 6)3

without meaningfully impacting the correlation of predictions.
Therefore, to stay true to the application case, in which data
are always scarce, the model trained on the small set is used for
all the following biased simulations.

Test on an Independent Trajectory. As can be seen on the
right side of Figure 4, graph-based models can be trained to
accurately predict the value of n(Q6). The previously
mentioned structural similarities between the GNN model
and the analytical variable to be approximated allow a relatively
small model to make highly accurate predictions, even outside
of its training domain. To quantitatively support this
observation, we report a systematic evaluation of the model
hyperparameters. The yellow model in Figure 4 has a latent
dimensionality of 8 and possesses two graph convolutional
layers, totaling 960 parameters. Its local nature makes it much
less sensitive to leaving the training domain as it estimates the
influence of local environments on the final CV value. In fact, a
sufficiently large training set can efficiently capture the
structural diversity of local environments, which is significantly
smaller than that of their combinations in global environments.
Another factor that simplifies the learning process is that the
models learn to predict the cube root of n(Q6) instead of
n(Q6) directly. Physically, this value can be interpreted as the
radius of the crystalline domain, but mainly it compresses the

range of n(Q6) values around the transition state. The primary
energy barrier of the system is around n(Q6) = 1, and the
model needs to distinguish early-stage nuclei from liquid
frames. Thus, taking the cube root reduces the influence of the
model performance on large crystals relative to the more
important transition state region during training. Therefore,
the models used in this work are trained to predict n Q( 6)3

instead of n(Q6).
Evaluating GNN Model Performances in Biased

Simulations. A way to test the suitability of a trained
model as a CV is to perform a pulling or moving restraint
simulation. This simulation “pulls” the system along a defined
CV by applying a harmonic restraint that gradually moves
throughout the simulation. Figure 5a shows the trajectory of
such a simulation that was obtained by using the CV model
highlighted in red in Figure 4 to pull the system through phase
space. The system rapidly crosses the high energy barrier at

n Q( 6) 13 , and the resulting nucleus grows into a
crystalline domain. The figure also illustrates how the pulling
simulation pushes the model far outside its training domain,
demonstrating the model’s robustness and indicating that even
outside its training domain, the model can still make
predictions correlated to the true values of n Q( 6)3 .

Scaling of Computational Costs. At the system size where
training is performed (421 particles), the GNN CV model is
3.5 times more cost-effective at performing biased simulations
than the reference n Q( 6)3 CV (see Figure 5b). While this is
not overly impressive, considering the effort necessary to create
such a model, the true power of this approach shows when
moving to larger systems. Even in systems as simple as this
one, the cost of performing biasing steps grows dramatically
with system size, making simulations with a number of
particles N (10 )4 virtually unfeasible. However, the model
developed here showcases a much more favorable cost scaling.
This is especially relevant since the model is size-transferable.
The model can be trained at a size where reference data
generation is feasible but then applied to much larger systems.
This opens up new ways of studying large atomistic systems
with enhanced sampling methods. It further suggests that the
cost gain could be even larger when approximating more
complex CVs, e.g., for molecular systems. It also answers the
inherent “chicken-and-egg” problem in data-driven CVs. This
means that to construct a CV from data, we need to sample
relevant configurations, which are by definition hard to obtain;
otherwise, CV-based sampling methods would not be needed
in the first place. Adopting a GNN-based approach, one can
train model CVs in a small system, where sampling is
computationally accessible, and deploy them in larger systems.

Umbrella Sampling Simulations. A key area of application
for these models is the generation of free energy profiles.
Figure 5c shows three free energy profiles obtained using the
same model in three different systems of various sizes via
umbrella sampling. The free energy profile obtained for the
421 particle system exhibits all the expected features: a
minimum for the dense liquid droplet is near 0, there is a
barrier at around 1, and a crystalline basin exists at higher
model CV values. The repulsive wall to the right of the free
energy surface (FES) basin representing the crystalline state in
the system results from finite-size effects. The other two
profiles show similar shapes and features. However, the
location of the nucleation barrier shifts with the system size.
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This is a problem, as the critical nucleus size should remain
independent of the system size. However, the reason for this is
that the model tends to overestimate n(Q6) values in larger
systems and underestimate them in smaller systems. Looking
at the training set of the model in Figure 5a, one can see that
the droplet size is strongly correlated with n(Q6) beyond n ≈
200. Thus, the model learns to associate larger droplets, even
without order, with larger predictions, and the free energy
profiles shift with the equilibrium size of the dense liquid
droplet. However, this only minimally impacts the model’s
ability to detect order. The height of the nucleation barrier,
projected onto the model CV, matches across the small
systems but decreases for the largest one. This can be partly
explained by the fact that in a larger system, due to the nature
of the CV, it is hard to restrict nucleation to a single site, and
biasing a system-wide CV leads to multiple clusters emerging
throughout the simulation box. For a better comparison of the
FESs, they should be reweighted to the analytical CV. Here
this is done using the weighted histogram analysis method
(WHAM).50 Figure 5c shows the critical nucleus sizes
obtained from the reweighted surfaces as vertical lines. These
values are obtained by averaging all CV values that fall within
one standard deviation of the maximum of the reweighted FES,

and the shading is the corresponding standard deviation. This
leads to a consistent estimate of the critical nucleus size across
all simulated systems, in agreement with an independent
estimate of the critical nucleus size obtained from committor
analysis.
These results demonstrate that the transferability of the

model CV is sufficient to yield a physically consistent picture of
the nucleation process across several system sizes. In its current
implementation, the main limitation associated with simulating
large systems is no longer the computational cost of the CV
but rather its GPU memory requirements.

System Transferability. A GNN model that is truly able to
capture the local structure of particle environments approx-
imating the collective variable n(Q6) should be applicable to
other systems in which the crystallization process can also be
described by n(Q6). To test system transferability, a copper
melt is created by equilibrating a 500-atom copper fcc crystal at
200 K for 1 ns at a fixed pressure of 1 bar and then melting it
by heating it from 200 to 2000 K over the course of 5 ns.
Finally, the melt is supercooled back down to 1100 K for 7.5
ns.
Figure 5d shows the result of a pulling simulation performed

with the same model and the same parameters as the one in

Figure 6. (a, b) Model predictions and reference values throughout two pulling simulations performed by the same model in a small system and a
large system. (c, d) Plots showing how the total correlation between the model, n, and n(Q6) over all frames up to the indicated step count evolves
throughout the simulation.
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Figure 5a. The only change made to the model is that the
cutoff radius for the neighbor list generation for the model
input is adapted to the radial distribution function of the
copper crystal. Evidently, the model can still describe the
nucleation process by distinguishing liquid and crystal-like
configurations. As such, it can be used as a pulling CV to drive
crystallization from the copper melt. The model was able to
achieve this even though it never encountered a metal melt in
its training. In fact, it was trained on configurations sampling
three metastable states, including a dispersed phase, a dense
liquid, and a crystal. In contrast, the nucleation of a metal from
its melt involves only two metastable states. Importantly, in the
training set, local density and local order show a degree of
correlation, while in the case of the copper melt, order emerges
without system-wide density fluctuations. We are convinced
that this is possible because the model has learned to capture

the local structure of a crystal in a way that strongly resembles
the analytical CV. We explicitly interrogate this assertion in the
following section. Finally, system transferability further justifies
the computational resources required to construct and train a
GNN model CV and opens up additional avenues for its
application.

Limitations and Critical Assessment of Transferability.
Despite the success in achieving accurate and transferable
predictions, the method presented has inherent limitations. As
previously mentioned, the training set contains the bias that
high values of n correlate with larger values of n(Q6), which,
for instance, leads to a high baseline prediction in the copper
melt (see Figure 5d). This, combined with the higher noise
level in the model predictions caused by the structural
differences between the copper melt configurations and the

Figure 7. Four independent metadynamics simulations with different simulation protocols, including well-tempered metadynamics (WTmetaD)
with different bias factors γ and standard metadynamics (MetaD), corresponding to γ = ∞. In every simulation, the bias potential is computed in
the space of two CVs ( n3 and n Q( 6)3 ) simultaneously predicted by a GNN model. All simulation setups reach a quasi-diffusive regime after the
first recrossing between the liquid intermediate and the crystal states. (a) History of the CV values during the simulations. (b) Resulting free energy
surface in the space of the model CVs computed merging the samples from all simulations with mean force integration (MFI).51 (c) Free energy
surface function of the analytical CVs, which is recovered via reweighting. Additional details on MFI and the associated reweighting procedure are
reported in the Supporting Information.15,51−54
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training data, reduces the resolution in the classification of
metastable states.
These effects limit the simultaneous size and system

transferability of the model CV, for which we can foresee a
size limit where it loses the ability to distinguish between the
crystalline and melt configurations.
The successes of the model in the copper melt suggest that it

is capable of distinguishing between local order and disorder
regardless of local density, yet it is important to critically
analyze whether the model in larger systems still actually
facilitates ordering or just the formation of a larger and larger
dense liquid droplet. To this aim, we analyze the correlation
between the order and density in the model CV and the
corresponding analytical reference. The top row in Figure 6
shows two pulling simulations using the same model CV
starting from small dense liquid droplets in two different-sized
systems. In the small system (see Figure 6a,c), the initial steps
of the simulation are characterized by the dense liquid droplet
growing until it reaches its equilibrium size. This process is
followed by the crossing of the nucleation barrier, which
coincides with a sharp increase in n(Q6). As expected, the
model predictions increase at exactly the same time as the
reference values. However, in the large system, the model
values increase around 40,000 steps earlier than the reference
values (Figure 6b). This increase is due to the growth of the
dense liquid droplet far beyond the sizes represented in the
training set. The yellow line in Figure 6d indicates that in this
range the model is most closely correlated to the variable n and
not n(Q6). After this initial period, the droplet stops growing,
and the crystalline domain emerges. At this stage, the model
goes back to being perfectly correlated to the reference n(Q6)
values.
This increase in “n character” with increasing system size is

not inherently a problem and is unique to this combination of
system and CVs. It does, however, serve as a reminder that this
is fundamentally a machine-learning approach and, as such, it is
limited by its training dataset. Therefore, any new insights into
nucleation mechanisms obtained using this approach should be
critically analyzed through the lens of dataset biases.
Fortunately, there are plenty of ways to supplement and
manipulate training datasets with collected or synthesized data
to combat such biases.

Constructing Multivariate Models for Adaptive Biasing in
Two Dimensions. So far, in this work we have highlighted
different aspects of how the approximative power of the
presented framework can be leveraged into computational
efficiency gains in enhanced sampling applications. However,
another way of increasing these gains is by approximating more
than one CV at once. In the models discussed up to now, the
final graph decoding layer maps the m-dimensional internal
vector representation of the model to a scalar value that is used
as a CV. This, however, is a somewhat arbitrary choice. By
changing the dimensionality of the output, the model can be
trained to approximate multiple CVs at once at effectively the
same computational cost.
In Figure 7, we demonstrate the application of one such

model, trained to simultaneously predict the n3 and n Q( 6)3

CVs.30 We deployed this method to perform four independent
two-dimensional metadynamics simulations in this CV space.
Three of these simulations are well-tempered metadynamics
(WTmetaD) with varying bias factors γ, while the fourth is a
standard, nontempered metadynamics simulation. The com-

bined sampling history of the four simulations is reported in
Figure 7a. Here we can see that after a first recrossing, all four
simulations reach a regime in which transitions between the
metastable liquid and crystalline states can be efficiently and
reversibly sampled. The two-dimensional FES obtained by
combining the statistics of all four simulations using mean
force integration (MFI)51,55 is shown in Figure 7b. This FES
exhibits all of the expected features, with a basin for the dense
liquid droplet and a deeper basin for the crystalline domain
separated by a free energy barrier at n(Q6) ≈ 1. However, due
to the statistical nature of the approximation provided by the
model CVs, the resulting free energy surface is not an exact
match to the one that an equivalent metadynamics simulation
using the analytical variables would produce. The statistical
noise in the CV prediction is shown by the time series of the
analytical and model CVs reported in Figure 7a. Its effects are
best exemplified in the liquid droplet basin, which extends into
the negative values due to the larger fluctuations of the GNN-
approximated variable compared to its analytical counterpart.
This effect, however, does not hinder the exploration of the
model configuration space and can be remedied by reweighting
the FES back into the space of the analytical CVs. Here we
obtain a reweighted FES as a function of the analytical n3 and

n Q( 6)3 by combining samples from all four metadynamics
simulations with time-independent weights computed via
MFI.15,51−54

Moreover, reweighting is a postprocessing procedure
entailing minimal computational effort, as it only requires the
evaluation of the analytical variables every few hundred steps
without the need for any gradients. The reweighted FES is
reported in Figure 7b. Additional details on the four
independent metadynamics simulations, together with further
discussion of the reweighing method, are reported in the
Supporting Information.
The model’s ability to accurately predict multiple variables

simultaneously, in this case, n3 and n Q( 6)3 , hints that we are
possibly far from exhausting the full approximative potential of
the approach described in this article, which we will further
investigate in a dedicated follow-up publication.

■ CONCLUSIONS
The framework developed in this work represents a powerful
general approach to mapping the Cartesian coordinates of a
system to its corresponding CV values. By sidestepping the
calculation of expensive symmetry functions or similar local
descriptors commonly used in comparable machine-learning
approaches, we unlocked considerable gains in computational
efficiency. This paves the way for the development of generally
applicable approaches to enhance the sampling of nucleation
events in complex systems that are currently out of reach, such
as molecular crystals from solution.
The proposed graph-based architecture enforces permuta-

tional invariances and allows the model CV to learn rotational
and translational invariances from data. Furthermore, such
models are inherently size-transferable, which enables one to
train the model at computationally accessible system sizes and
deploy them in larger-scale simulations with minimal computa-
tional overhead.
In principle, due to its modular nature, the model presented

here can be adapted to meet the demands of more complex
CVs, such as those necessary when simulating nucleation in
molecular systems.21,24,36
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Solving the computational bottleneck associated with
evaluating complex CVs in self-assembling systems is central
to developing general approaches to studying nucleation. Thus,
we are convinced that approaches like the one proposed here
will be crucial to model crystallization in realistic environ-
ments.
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