56 research outputs found

    Monitoring Littoral Platform Downwearing using Differential SAR Interferometry

    Get PDF
    A methodology for the remotely sensed monitoring, measurement and quantification of littoral zone platform downwearing has been developed and is demonstrated, using Persistent Scatterer Interferometric Synthetic Aperture Radar data and analysis. The research area is a 30 km section of coast in East Sussex, UK. This area combines a range of coastal environments and is characterised by the exposure of chalk along the cliffs and coastal platform. Persistent Scatterer Interferometry (PSI) has been employed, using 3.5 years of Sentinel-1 SAR data. The results demonstrate an average ground level change of −0.36 mm a−1 across the research area, caused by platform downwearing. Protected sections of coast are downwearing at an average of −0.33 mm a−1 compared to unprotected sections, which are downwearing more rapidly at an average rate of −1.10 mm a−1. The material properties of the chalk formations in the platform were considered, and in unprotected areas the weakest chalk types eroded at higher rates (−0.66 mm a−1) than the more resistant formations (−0.53 mm a−1). At a local scale, results were achieved in three studies to demonstrate variations between urban and rural environments. Individual persistent scatterer point values provided a near-continuous sequence of measurements, which allowed the effects of processes to be evaluated. The results of this investigation show an effective way of retrospective and ongoing monitoring of platform downwearing, erosion and other littoral zone processes, at regional, local and point-specific scales

    Limitations of persistent scatterer interferometry to measure small seasonal ground movements in an urban environment

    Get PDF
    London Clay, which underlies the majority of Greater London, has a high shrink–swell potential that can result in damage to foundations and surface infrastructure due to seasonal expansion and contraction of the clay. Currently, surface movement as a result of shrink–swell is not monitored in London, meaning that the magnitude and cyclicity of these movements is poorly understood. Persistent Scatterer Interferometric (PSI) Synthetic Aperture Radar data provide high-precision line-of-sight displacement measurements at a high point density across urban areas, offering the possibility of routine shrink–swell monitoring across whole cities. To test this, PSI data derived from TerraSAR-X (TSX) observations for the period from May 2011 to April 2017 were analysed for shrink–swell patterns across three areas of London in Hammersmith, Muswell Hill and Islington. A consistent cyclicity and amplitude was detected at all sites and the number of cycles is comparable with those identified in rainfall data. The amplitude of these cycles is smaller than anticipated, most probably because of the resisting effect of roads and pavements. The Cranfield University Leakage Assessment from Corrosivity and Shrinkage (LEACS) database was used to subdivide the PSI data and the average velocity and amplitude of each class statistically tested for significant differences between classes. The results show that it is not possible to statistically isolate possible soil shrink–swell movement in TSX PSI data in London

    The development of copper clad laminate horn antennas for drone interferometric synthetic aperture radar

    Get PDF
    Interferometric synthetic aperture radar (InSAR) is an active remote sensing technique that typically utilises satellite data to quantify Earth surface and structural deformation. Drone InSAR should provide improved spatial-temporal data resolutions and operational flexibility. This necessitates the development of custom radar hardware for drone deployment, including antennas for the transmission and reception of microwave electromagnetic signals. We present the design, simulation, fabrication, and testing of two lightweight and inexpensive copper clad laminate (CCL)/printed circuit board (PCB) horn antennas for C-band radar deployed on the DJI Matrice 600 Pro drone. This is the first demonstration of horn antennas fabricated from CCL, and the first complete overview of antenna development for drone radar applications. The dimensions are optimised for the desired gain and centre frequency of 19 dBi and 5.4 GHz, respectively. The S11, directivity/gain, and half power beam widths (HPBW) are simulated in MATLAB, with the antennas tested in a radio frequency (RF) electromagnetic anechoic chamber using a calibrated vector network analyser (VNA) for comparison. The antennas are highly directive with gains of 15.80 and 16.25 dBi, respectively. The reduction in gain compared to the simulated value is attributed to a resonant frequency shift caused by the brass input feed increasing the electrical dimensions. The measured S11 and azimuth HPBW either meet or exceed the simulated results. A slight performance disparity between the two antennas is attributed to minor artefacts of the manufacturing and testing processes. The incorporation of the antennas into the drone payload is presented. Overall, both antennas satisfy our performance criteria and highlight the potential for CCL/PCB/FR-4 as a lightweight and inexpensive material for custom antenna production in drone radar and other antenna applications

    Introducing the “analogs for Venus’ geologically recent surfaces” initiative: an opportunity for identifying and analyzing recently active volcano-tectonic areas of Venus trough a comparative study with terrestrial analogs

    Get PDF
    Several missions to Venus have been recently selected for launch [1–6], opening a new era for the exploration of the planet. One of the key questions that the future missions need to address is whether Venus is presently volcanically active [7–15]. Studying areas of active volcanism and tectonism on Venus is crucial to reveal clues about the geologic past of the planet, as well as provide information about the volatile content of its interior and the formation of its dense atmosphere. The “Analogsfor VENus’ GEologically Recent Surfaces” (AVENGERS) initiative aims to build a comprehensive database of terrestrial analog sites for the comparative study of recent and possibly on- going volcanic activity on Venus. Besides its scientific relevance, the AVENG- ERS initiative also acts as a bridge for international scientific collaboration, including the leadership and/or team members from the currently selected missions to Venus

    Mount Etna as a terrestrial laboratory to investigate recent volcanic activity on Venus by future missions:A comparison with Idunn Mons, Venus

    Get PDF
    The recently selected missions to Venus have opened a new era for the exploration of this planet. These missions will provide information about the chemistry of the atmosphere, the geomorphology, local-to-regional surface composition, and the rheology of the interior. One key scientific question to be addressed by these future missions is whether Venus remains volcanically active, and if so, how its volcanism is currently evolving. Hence, it is fundamental to analyze appropriate terrestrial analog sites for the study of possibly active volcanism on Venus. To this regard, we propose Mount Etna - one of the most active and monitored volcanoes on Earth - as a suitable terrestrial laboratory for remote and in-situ investigations to be performed by future missions to Venus. Being characterized by both effusive and explosive volcanic products, Mount Etna offers the opportunity to analyze multiple eruptive styles, both monitoring active volcanism and identifying the possible occurrence of pyroclastic activity on Venus. We directly compare Mount Etna with Idunn Mons, one of the most promising potentially active volcanoes of Venus. Despite the two structures show a different topography, they also show some interesting points of comparison, and in particular: a) comparable morpho-structural setting, since both volcanoes interact with a rift zone, and b) morphologically similar volcanic fields around both Mount Etna and Idunn Mons. Given its ease of access, we also propose Mount Etna as an analog site for laboratory spectroscopic studies to identify the signatures of unaltered volcanic deposits on Venus

    What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth’s “Sister” Planet

    Get PDF
    Venus is Earth’s closest planetary neighbour and both bodies are of similar size and mass. As a consequence, Venus is often described as Earth’s sister planet. But the two worlds have followed very different evolutionary paths, with Earth having benign surface conditions, whereas Venus has a surface temperature of 464 °C and a surface pressure of 92 bar. These inhospitable surface conditions may partially explain why there has been such a dearth of space missions to Venus in recent years.The oxygen isotope composition of Venus is currently unknown. However, this single measurement (Δ17O) would have first order implications for our understanding of how large terrestrial planets are built. Recent isotopic studies indicate that the Solar System is bimodal in composition, divided into a carbonaceous chondrite (CC) group and a non-carbonaceous (NC) group. The CC group probably originated in the outer Solar System and the NC group in the inner Solar System. Venus comprises 41% by mass of the inner Solar System compared to 50% for Earth and only 5% for Mars. Models for building large terrestrial planets, such as Earth and Venus, would be significantly improved by a determination of the Δ17O composition of a returned sample from Venus. This measurement would help constrain the extent of early inner Solar System isotopic homogenisation and help to identify whether the feeding zones of the terrestrial planets were narrow or wide.Determining the Δ17O composition of Venus would also have significant implications for our understanding of how the Moon formed. Recent lunar formation models invoke a high energy impact between the proto-Earth and an inner Solar System-derived impactor body, Theia. The close isotopic similarity between the Earth and Moon is explained by these models as being a consequence of high-temperature, post-impact mixing. However, if Earth and Venus proved to be isotopic clones with respect to Δ17O, this would favour the classic, lower energy, giant impact scenario.We review the surface geology of Venus with the aim of identifying potential terrains that could be targeted by a robotic sample return mission. While the potentially ancient tessera terrains would be of great scientific interest, the need to minimise the influence of venusian weathering favours the sampling of young basaltic plains. In terms of a nominal sample mass, 10 g would be sufficient to undertake a full range of geochemical, isotopic and dating studies. However, it is important that additional material is collected as a legacy sample. As a consequence, a returned sample mass of at least 100 g should be recovered.Two scenarios for robotic sample return missions from Venus are presented, based on previous mission proposals. The most cost effective approach involves a “Grab and Go” strategy, either using a lander and separate orbiter, or possibly just a stand-alone lander. Sample return could also be achieved as part of a more ambitious, extended mission to study the venusian atmosphere. In both scenarios it is critical to obtain a surface atmospheric sample to define the extent of atmosphere-lithosphere oxygen isotopic disequilibrium. Surface sampling would be carried out by multiple techniques (drill, scoop, “vacuum-cleaner” device) to ensure success. Surface operations would take no longer than one hour.Analysis of returned samples would provide a firm basis for assessing similarities and differences between the evolution of Venus, Earth, Mars and smaller bodies such as Vesta. The Solar System provides an important case study in how two almost identical bodies, Earth and Venus, could have had such a divergent evolution. Finally, Venus, with its runaway greenhouse atmosphere, may provide data relevant to the understanding of similar less extreme processes on Earth. Venus is Earth’s planetary twin and deserves to be better studied and understood. In a wider context, analysis of returned samples from Venus would provide data relevant to the study of exoplanetary systems

    Venus Evolution Through Time: Key Science Questions, Selected Mission Concepts and Future Investigations

    Get PDF
    In this work we discuss various selected mission concepts addressing Venus evolution through time. More specifically, we address investigations and payload instrument concepts supporting scientific goals and open questions presented in the companion articles of this volume. Also included are their related investigations (observations & modeling) and discussion of which measurements and future data products are needed to better constrain Venus’ atmosphere, climate, surface, interior and habitability evolution through time. A new fleet of Venus missions has been selected, and new mission concepts will continue to be considered for future selections. Missions under development include radar-equipped ESA-led EnVision M5 orbiter mission (European Space Agency 2021), NASA-JPL’s VERITAS orbiter mission (Smrekar et al. 2022a), NASA-GSFC’s DAVINCI entry probe/flyby mission (Garvin et al. 2022a). The data acquired with the VERITAS, DAVINCI, and EnVision from the end of this decade will fundamentally improve our understanding of the planet’s long term history, current activity and evolutionary path. We further describe future mission concepts and measurements beyond the current framework of selected missions, as well as the synergies between these mission concepts, ground-based and space-based observatories and facilities, laboratory measurements, and future algorithmic or modeling activities that pave the way for the development of a Venus program that extends into the 2040s (Wilson et al. 2022)

    Pargo Chasma and its relationship to global tectonics.

    Get PDF
    Pargo Chasma was first identified on Pioneer Venus data as a 10,000 km long lineation extending from Atla Regio in the north terminating in the plains south of Phoebe Regio. More recent Magellan data have revealed this feature to be one of the longest chains of coronae so far identified on the planet. Stofan et al have identified 60 coronae and 2 related features associated with this chain; other estimates differ according to the classification scheme adopted, for example Head et al. identify only 29 coronae but 43 arachnoids in the same region. This highlights one of the major problems associated with the preliminary mapping of the Magellan data: there has been an emphasis on identifying particular features on Venus without a universally accepted scheme to classify those features. Nevertheless, Pargo Chasma is clearly identified as a major tectonic belt of global significance. Together with the Artemis-Atla-Beta tectonic zone and the Beta-Phoebe rift belt, Pargo Chasma defines a region on Venus with an unusually high concentration of tectonic and volcanic features. Thus, an understanding of the processes involved in the formation of Pargo Chasma may lend significant insight into the evolution of the region and the planet as a whole. I have produced a detailed 1 to 10 million scale map of Pargo Chasma and the surrounding area from preliminary USGS controlled mosaiced image maps of Venus constructed from Magellan data. In view of the problems highlighted above in relation the efforts already made at identifying a particular set of features I have mapped the region purely on the basis of the geomorphology visible in the magellan data without any attempt at identifying a particular set or class of features. Thus, the map produced distinguishes between areas of different brightness and texture. This has the advantage of highlighting the tectonic fabric of Pargo Chasma and clearly illustrates the close inter-relationship between individual coronae and the surrounding tectonic belts
    • 

    corecore