99 research outputs found
Inflammation and altered metabolism impede efficacy of functional electrical stimulation in critically ill patients.
BACKGROUND: Critically ill patients suffer from acute muscle wasting, which is associated with significant physical functional impairment. We describe data from nested muscle biopsy studies from two trials of functional electrical stimulation (FES) that did not shown improvements in physical function. METHODS: Primary cohort: single-centre randomized controlled trial. Additional healthy volunteer data from patients undergoing elective hip arthroplasty. Validation cohort: Four-centre randomized controlled trial. INTERVENTION: FES cycling for 60-90min/day. ANALYSES: Skeletal muscle mRNA expression of 223 genes underwent hierarchal clustering for targeted analysis and validation. RESULTS: Positively enriched pathways between healthy volunteers and ICU participants were "stress response", "response to stimuli" and "protein metabolism", in keeping with published data. Positively enriched pathways between admission and day 7 ICU participants were "FOXO-mediated transcription" (admission = 0.48 ± 0.94, day 7 = - 0.47 ± 1.04 mean log2 fold change; P = 0.042), "Fatty acid metabolism" (admission = 0.50 ± 0.67, day 7 = 0.07 ± 1.65 mean log2 fold change; P = 0.042) and "Interleukin-1 processing" (admission = 0.88 ± 0.50, day 7 = 0.97 ± 0.76 mean log2 fold change; P = 0.054). Muscle mRNA expression of UCP3 (P = 0.030) and DGKD (P = 0.040) decreased in both cohorts with no between group differences. Changes in IL-18 were not observed in the validation cohort (P = 0.268). Targeted analyses related to intramuscular mitochondrial substrate oxidation, fatty acid oxidation and intramuscular inflammation showed PPARγ-C1α; (P 0.05). CONCLUSIONS: Intramuscular inflammation and altered substrate utilization are persistent in skeletal muscle during first week of critical illness and are not improved by the application of Functional Electrical Stimulation-assisted exercise. Future trials of exercise to prevent muscle wasting and physical impairment are unlikely to be successful unless these processes are addressed by other means than exercise alone
High BMI is significantly associated with positive progesterone receptor status and clinico-pathological markers for non-aggressive disease in endometrial cancer
Background: Endometrial cancer incidence is increasing in industrialised countries. High body mass index (BMI, kg m−2) is associated with higher risk for disease. We wanted to investigate if BMI is related to clinico-pathological characteristics, hormone receptor status in primary tumour, and disease outcome in endometrial cancer. Patients and methods: In total, 1129 women primarily treated for endometrial carcinoma at Haukeland University Hospital during 1981–2009 were studied. Body mass index was available for 949 patients and related to comprehensive clinical and histopathological data, hormone receptor status in tumour, treatment, and follow-up. Results: High BMI was significantly associated with low International Federation of Gynaecology and Obstetrics (FIGO) stage, endometrioid histology, low/intermediate grade, and high level of progesterone receptor (PR) mRNA by qPCR (n=150; P=0.02) and protein expression by immunohistochemistry (n=433; P=0.003). In contrast, oestrogen receptor (ERα) status was not associated with BMI. Overweight/obese women had significantly better disease-specific survival (DSS) than normal/underweight women in univariate analysis (P=0.035). In multivariate analysis of DSS adjusting for age, FIGO stage, histological subtype, and grade, BMI showed no independent prognostic impact. Conclusion: High BMI was significantly associated with markers of non-aggressive disease and positive PR status in a large population-based study of endometrial carcinoma. Women with high BMI had significantly better prognosis in univariate analysis of DSS, an effect that disappeared in multivariate analysis adjusting for established prognostic markers. The role of PR in endometrial carcinogenesis needs to be further studied
In vivo fluorescence imaging of the transport of charged chlorine6 conjugates in a rat orthotopic prostate tumour
Polymeric drug conjugates are used in cancer therapy and, varying their molecular size and charge, will affect their in vivo transport and extravasation in tumours. Partitioning between tumour vasculature and tumour tissue will be of particular significance in the case of photosensitizer conjugates used in photodynamic therapy, where this partitioning can lead to different therapeutic effects. Poly-l-lysine chlorine6 conjugates (derived from polymers of averageMr 5000 and 25 000) were prepared both in a cationic state and by poly-succinylation in an anionic state. A fluorescence scanning laser microscope was used to follow the pharmacokinetics of these conjugates in vivo in an orthotopic rat prostate cancer model obtained with MatLyLu cells. Fluorescence was excited with the 454–528 nm group of lines of an argon laser and a 570 nm long pass filter used to isolate the emission. Results showed that the conjugates initially bound to the walls of the vasculature, before extravasating into the tissue, and eventually increasing in fluorescence. The anionic conjugates produced tissue fluorescence faster than the cationic ones, and surprisingly, the largerMr conjugates produced tissue fluorescence faster than the smaller ones with the same charge. These results are consistent with differences in aggregation state between conjugates. © 1999 Cancer Research Campaig
Ovarian carcinoma associated with pregnancy: A clinicopathologic analysis of 23 cases and review of the literature
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to analyze and describe cases of ovarian cancer in pregnant women treated at our center and to review the literature concerned, and to discuss the rationale for therapy.</p> <p>Methods</p> <p>Twenty-Three patients of ovarian malignancies during pregnancy were treated at Vali- Asr Hospital between 1991 and 2002. Data on treatment and follow-up were evaluated.</p> <p>Results</p> <p>The incidence of ovarian carcinoma associated with pregnancy in our series was 0.083/1000 deliveries. Eleven (47.8%) were found with ovarian malignant germ cell tumors, five (21.7%) with low malignant potential tumors, four (17.4%) with invasive epithelial tumors, and three (13%) with sex cord stromal tumors. Seventeen (73.9%) of the patients were diagnosed in stage I and had complete remission. Five of the six in advanced stage died. The mean follow-up was 36.3 months. The prognosis was significantly related with stage and histological type (<it>P </it>< 0.05). Sixteen healthy live babies were recorded in this group, and two premature newborn died of respiratory distress syndrome. Chemotherapy was administered to 44% of the patients, in two cases during pregnancy. Overall survival at 5 years was 61%. In most of case conservative surgical treatment could be performed with adequate staging and debulking.</p> <p>Conclusion</p> <p>Early finding of ascitis by ultrasound and persistent large ovarian mass during pregnancy may be related to malignancy and advanced stage. Pregnant women in advanced stage of ovarian cancer seem to have poor prognosis.</p
Examination of the efficacy of acute L-alanyl-L-glutamine ingestion during hydration stress in endurance exercise
<p>Abstract</p> <p>Background</p> <p>The effect of acute L-alanyl-L-glutamine (AG; Sustamine™) ingestion on performance changes and markers of fluid regulation, immune, inflammatory, oxidative stress, and recovery was examined in response to exhaustive endurance exercise, during and in the absence of dehydration.</p> <p>Methods</p> <p>Ten physically active males (20.8 ± 0.6 y; 176.8 ± 7.2 cm; 77.4 ± 10.5 kg; 12.3 ± 4.6% body fat) volunteered to participate in this study. During the first visit (T1) subjects reported to the laboratory in a euhydrated state to provide a baseline (BL) blood draw and perform a maximal exercise test. In the four subsequent randomly ordered trials, subjects dehydrated to -2.5% of their baseline body mass. For T2, subjects achieved their goal weight and were not rehydrated. During T3 - T5, subjects reached their goal weight and then rehydrated to 1.5% of their baseline body mass by drinking either water (T3) or two different doses (T4 and T5) of the AG supplement (0.05 g·kg<sup>-1 </sup>and 0.2 g·kg<sup>-1</sup>, respectively). Subjects then exercised at a workload that elicited 75% of their VO<sub>2 </sub>max on a cycle ergometer. During T2 - T5 blood draws occurred once goal body mass was achieved (DHY), immediately prior to the exercise stress (RHY), and immediately following the exercise protocol (IP). Resting 24 hour (24P) blood samples were also obtained. Blood samples were analyzed for glutamine, potassium, sodium, aldosterone, arginine vasopressin (AVP), C-reactive protein (CRP), interleukin-6 (IL-6), malondialdehyde (MDA), testosterone, cortisol, ACTH, growth hormone and creatine kinase. Statistical evaluation of performance, hormonal and biochemical changes was accomplished using a repeated measures analysis of variance.</p> <p>Results</p> <p>Glutamine concentrations for T5 were significantly higher at RHY and IP than T2 - T4. When examining performance changes (difference between T2 - T5 and T1), significantly greater times to exhaustion occurred during T4 (130.2 ± 340.2 sec) and T5 (157.4 ± 263.1 sec) compared to T2 (455.6 ± 245.0 sec). Plasma sodium concentrations were greater (p < 0.05) at RHY and IP for T2 than all other trials. Aldosterone concentrations at RHY and IP were significantly lower than that at BL and DHY. AVP was significantly elevated at DHY, RHY and IP compared to BL measures. No significant differences were observed between trials in CRP, IL-6, MDA, or in any of the other hormonal or biochemical measures.</p> <p>Conclusion</p> <p>Results demonstrate that AG supplementation provided a significant ergogenic benefit by increasing time to exhaustion during a mild hydration stress. This ergogenic effect was likely mediated by an enhanced fluid and electrolyte uptake.</p
Clinical and organizational factors associated with mortality during the peak of first COVID-19 wave: the global UNITE-COVID study
Purpose: To accommodate the unprecedented number of critically ill patients with pneumonia caused by coronavirus disease 2019 (COVID-19) expansion of the capacity of intensive care unit (ICU) to clinical areas not previously used for critical care was necessary. We describe the global burden of COVID-19 admissions and the clinical and organizational characteristics associated with outcomes in critically ill COVID-19 patients. Methods: Multicenter, international, point prevalence study, including adult patients with SARS-CoV-2 infection confirmed by polymerase chain reaction (PCR) and a diagnosis of COVID-19 admitted to ICU between February 15th and May 15th, 2020. Results: 4994 patients from 280 ICUs in 46 countries were included. Included ICUs increased their total capacity from 4931 to 7630 beds, deploying personnel from other areas. Overall, 1986 (39.8%) patients were admitted to surge capacity beds. Invasive ventilation at admission was present in 2325 (46.5%) patients and was required during ICU stay in 85.8% of patients. 60-day mortality was 33.9% (IQR across units: 20%–50%) and ICU mortality 32.7%. Older age, invasive mechanical ventilation, and acute kidney injury (AKI) were associated with increased mortality. These associations were also confirmed specifically in mechanically ventilated patients. Admission to surge capacity beds was not associated with mortality, even after controlling for other factors. Conclusions: ICUs responded to the increase in COVID-19 patients by increasing bed availability and staff, admitting up to 40% of patients in surge capacity beds. Although mortality in this population was high, admission to a surge capacity bed was not associated with increased mortality. Older age, invasive mechanical ventilation, and AKI were identified as the strongest predictors of mortality
Recommended from our members
The integration of lipid-sensing and anti-inflammatory effects: how the PPARs play a role in metabolic balance
The peroxisomal proliferating-activated receptors (PPARs) are lipid-sensing transcription factors that have a role in embryonic development, but are primarily known for modulating energy metabolism, lipid storage, and transport, as well as inflammation and wound healing. Currently, there is no consensus as to the overall combined function of PPARs and why they evolved. We hypothesize that the PPARs had to evolve to integrate lipid storage and burning with the ability to reduce oxidative stress, as energy storage is essential for survival and resistance to injury/infection, but the latter increases oxidative stress and may reduce median survival (functional longevity). In a sense, PPARs may be an evolutionary solution to something we call the 'hypoxia-lipid' conundrum, where the ability to store and burn fat is essential for survival, but is a 'double-edged sword', as fats are potentially highly toxic. Ways in which PPARs may reduce oxidative stress involve modulation of mitochondrial uncoupling protein (UCP) expression (thus reducing reactive oxygen species, ROS), optimising forkhead box class O factor (FOXO) activity (by improving whole body insulin sensitivity) and suppressing NFkB (at the transcriptional level). In light of this, we therefore postulate that inflammation-induced PPAR downregulation engenders many of the signs and symptoms of the metabolic syndrome, which shares many features with the acute phase response (APR) and is the opposite of the phenotype associated with calorie restriction and high FOXO activity. In genetically susceptible individuals (displaying the naturally mildly insulin resistant 'thrifty genotype'), suboptimal PPAR activity may follow an exaggerated but natural adipose tissue-related inflammatory signal induced by excessive calories and reduced physical activity, which normally couples energy storage with the ability to mount an immune response. This is further worsened when pancreatic decompensation occurs, resulting in gluco-oxidative stress and lipotoxicity, increased inflammatory insulin resistance and oxidative stress. Reactivating PPARs may restore a metabolic balance and help to adapt the phenotype to a modern lifestyle
ESMO / ASCO Recommendations for a Global Curriculum in Medical Oncology Edition 2016
The European Society for Medical Oncology (ESMO) and the American Society of Clinical Oncology (ASCO) are publishing a new edition of the ESMO/ASCO Global Curriculum (GC) thanks to contribution of 64 ESMO-appointed and 32 ASCO-appointed authors. First published in 2004 and updated in 2010, the GC edition 2016 answers to the need for updated recommendations for the training of physicians in medical oncology by defining the standard to be fulfilled to qualify as medical oncologists. At times of internationalisation of healthcare and increased mobility of patients and physicians, the GC aims to provide state-of-the-art cancer care to all patients wherever they live. Recent progress in the field of cancer research has indeed resulted in diagnostic and therapeutic innovations such as targeted therapies as a standard therapeutic approach or personalised cancer medicine apart from the revival of immunotherapy, requiring specialised training for medical oncology trainees. Thus, several new chapters on technical contents such as molecular pathology, translational research or molecular imaging and on conceptual attitudes towards human principles like genetic counselling or survivorship have been integrated in the GC. The GC edition 2016 consists of 12 sections with 17 subsections, 44 chapters and 35 subchapters, respectively. Besides renewal in its contents, the GC underwent a principal formal change taking into consideration modern didactic principles. It is presented in a template-based format that subcategorises the detailed outcome requirements into learning objectives, awareness, knowledge and skills. Consecutive steps will be those of harmonising and implementing teaching and assessment strategies
- …