445 research outputs found

    Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath

    Get PDF
    Collisionless space plasma turbulence can generate reconnecting thin current sheets as suggested by recent results of numerical magnetohydrodynamic simulations. The MMS mission provides the first serious opportunity to check if small ion-electron-scale reconnection, generated by turbulence, resembles the reconnection events frequently observed in the magnetotail or at the magnetopause. Here we investigate field and particle observations obtained by the MMS fleet in the turbulent terrestrial magnetosheath behind quasi-parallel bow shock geometry. We observe multiple small-scale current sheets during the event and present a detailed look of one of the detected structures. The emergence of thin current sheets can lead to electron scale structures where ions are demagnetized. Within the selected structure we see signatures of ion demagnetization, electron jets, electron heating and agyrotropy suggesting that MMS spacecraft observe reconnection at these scales

    The texture and taste of food in the brain

    Get PDF
    Oral texture is represented in the brain areas that represent taste, including the primary taste cortex, the orbitofrontal cortex, and the amygdala. Some neurons represent viscosity, and their responses correlate with the subjective thickness of a food. Other neurons represent fat in the mouth, and represent it by its texture not by its chemical composition, in that they also respond to paraffin oil and silicone in the mouth. The discovery has been made that these fat-responsive neurons encode the coefficient of sliding friction and not viscosity, and this opens the way for the development of new foods with the pleasant mouth feel of fat and with health-promoting designed nutritional properties. A few other neurons respond to free fatty acids (such as linoleic acid), do not respond to fat in the mouth, and may contribute to some 'off' tastes in the mouth. Some other neurons code for astringency. Others neurons respond to other aspects of texture such as the crisp fresh texture of a slice of apple vs the same apple after blending. Different neurons respond to different combinations of these texture properties, oral temperature, taste, and in the orbitofrontal cortex to olfactory and visual properties of food. In the orbitofrontal cortex, the pleasantness and reward value of the food is represented, but the primary taste cortex represents taste and texture independently of value. These discoveries were made in macaques that have similar cortical brain areas for taste and texture processing as humans, and complementary human functional neuroimaging studies are described. This article is protected by copyright. All rights reserved. [Abstract copyright: This article is protected by copyright. All rights reserved.

    An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    Get PDF
    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles

    Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia

    Get PDF
    BackgroundCritical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities.Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization.Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues.MethodsBalb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 mu l physiological serum (SC, n:8) or 5x10(5) human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related.ResultsAdministration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown.ConclusionsOur results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network.Institute of Health Carlos III, ISCIII; Junta de Andaluci

    Always Contact a Vascular Interventional Specialist Before Amputating a Patient with Critical Limb Ischemia

    Get PDF
    Patients with severe critical limb ischemia (CLI) due to long tibial artery occlusions are often poor candidates for surgical revascularization and frequently end up with a lower limb amputation. Subintimal angioplasty (SA) offers a minimally invasive alternative for limb salvage in this severely compromised patient population. The objective of this study was to evaluate the results of SA in patients with CLI caused by long tibial occlusions who have no surgical options for revascularization and are facing amputation. We retrospectively reviewed all consecutive patients with CLI due to long tibial occlusions who were scheduled for amputation because they had no surgical options for revascularization and who were treated by SA. A total of 26 procedures in 25 patients (14 males; mean age, 70 ± 15 [SD] years) were evaluated. Technical success rate was 88% (23/26). There were four complications, which were treated conservatively. Finally, in 10 of 26 limbs, no amputation was needed. A major amputation was needed in 10 limbs (7 below-knee amputations and 3 above-knee amputations). Half of the major amputations took place within 3 months after the procedure. Cumulative freedom of major amputation after 12 months was 59% (SE = 11%). In six limbs, amputation was limited to a minor amputation. Seven patients (28%) died during follow-up. In conclusion, SA of the tibial arteries seem to be a valuable treatment option to prevent major amputation in patients with CLI who are facing amputation due to lack of surgical options

    MMS Measurements of the Vlasov Equation: Probing the Electron Pressure Divergence Within Thin Current Sheets

    Get PDF
    We investigate the kinetic structure of electron‐scale current sheets found in the vicinity of the magnetopause and embedded in the magnetosheath within the reconnection exhaust. A new technique for computing terms of the Vlasov equation using Magnetospheric Multiscale (MMS) measurements is presented and applied to study phase space density gradients and the kinetic origins of the electron pressure divergence found within these current sheets. Crescent‐shaped structures in ∇⊄2fe give rise to bipolar and quadrupolar signatures in v·∇fe measured near the maximum ∇·Pe inside the current layers. The current density perpendicular to the magnetic field is strong (J⊄∌2 ÎŒA/m2), and the thickness of the current layers ranges from 3 to 5 electron inertial lengths. The electron flows supporting the current layers mainly result from the combination of E×B and diamagnetic drifts. We find nonzero J·Eâ€Č within the current sheets even though they are observed apart from typical diffusion region signatures.publishedVersio

    Evaluation and Treatment of Patients With Lower Extremity Peripheral Artery Disease Consensus Definitions From Peripheral Academic Research Consortium (PARC)

    Get PDF
    The lack of consistent definitions and nomenclature across clinical trials of novel devices, drugs, or biologics poses a significant barrier to accrual of knowledge in and across peripheral artery disease therapies and technologies. Recognizing this problem, the Peripheral Academic Research Consortium, together with the U.S. Food and Drug Administration and the Japanese Pharmaceuticals and Medical Devices Agency, has developed a series of pragmatic consensus definitions for patients being treated for peripheral artery disease affecting the lower extremities. These consensus definitions include the clinical presentation, anatomic depiction, interventional outcomes, surrogate imaging and physiological follow-up, and clinical outcomes of patients with lower-extremity peripheral artery disease. Consistent application of these definitions in clinical trials evaluating novel revascularization technologies should result in more efficient regulatory evaluation and best practice guidelines to inform clinical decisions in patients with lower extremity peripheral artery disease
    • 

    corecore