290 research outputs found

    A High Braking Index for a Pulsar

    Get PDF
    We present a phase-coherent timing solution for PSR J1640–4631, a young 206 ms pulsar using X-ray timing observations taken with NuSTAR. Over this timing campaign, we have measured the braking index of PSR J1640–4631 to be n = 3.15 ± 0.03. Using a series of simulations, we argue that this unusually high braking index is not due to timing noise, but is intrinsic to the pulsar's spin-down. We cannot, however, rule out contamination due to an unseen glitch recovery, although the recovery timescale would have to be longer than most yet observed. If this braking index is eventually proven to be stable, it demonstrates that pulsar braking indices greater than three are allowed in nature; hence, other physical mechanisms such as mass or magnetic quadrupoles are important in pulsar spin-down. We also present a 3σ upper limit on the pulsed flux at 1.4 GHz of 0.018 mJy

    Limits on the Stochastic Gravitational Wave Background from the North American Nanohertz Observatory for Gravitational Waves

    Get PDF
    We present an analysis of high-precision pulsar timing data taken as part of the North American Nanohertz Observatory for Gravitational waves (NANOGrav) project. We have observed 17 pulsars for a span of roughly five years using the Green Bank and Arecibo radio telescopes. We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Sub-microsecond timing residuals are obtained in nearly all cases, and the best root-mean-square timing residuals in this set are ~30-50 ns. We present methods for analyzing post-fit timing residuals for the presence of a gravitational wave signal with a specified spectral shape. These optimally take into account the timing fluctuation power removed by the model fit, and can be applied to either data from a single pulsar, or to a set of pulsars to detect a correlated signal. We apply these methods to our dataset to set an upper limit on the strength of the nHz-frequency stochastic supermassive black hole gravitational wave background of h_c (1 yr^-1) < 7x10^-15 (95%). This result is dominated by the timing of the two best pulsars in the set, PSRs J1713+0747 and J1909-3744.Comment: To be submitted to Ap

    The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries

    Full text link
    Observations indicate that nearly all galaxies contain supermassive black holes (SMBHs) at their centers. When galaxies merge, their component black holes form SMBH binaries (SMBHBs), which emit low-frequency gravitational waves (GWs) that can be detected by pulsar timing arrays (PTAs). We have searched the recently-released North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 11-year data set for GWs from individual SMBHBs in circular orbits. As we did not find strong evidence for GWs in our data, we placed 95\% upper limits on the strength of GWs from such sources as a function of GW frequency and sky location. We placed a sky-averaged upper limit on the GW strain of h0<7.3(3)×10−15h_0 < 7.3(3) \times 10^{-15} at fgw=8f_\mathrm{gw}= 8 nHz. We also developed a technique to determine the significance of a particular signal in each pulsar using ``dropout' parameters as a way of identifying spurious signals in measurements from individual pulsars. We used our upper limits on the GW strain to place lower limits on the distances to individual SMBHBs. At the most-sensitive sky location, we ruled out SMBHBs emitting GWs with fgw=8f_\mathrm{gw}= 8 nHz within 120 Mpc for M=109 M⊙\mathcal{M} = 10^9 \, M_\odot, and within 5.5 Gpc for M=1010 M⊙\mathcal{M} = 10^{10} \, M_\odot. We also determined that there are no SMBHBs with M>1.6×109 M⊙\mathcal{M} > 1.6 \times 10^9 \, M_\odot emitting GWs in the Virgo Cluster. Finally, we estimated the number of potentially detectable sources given our current strain upper limits based on galaxies in Two Micron All-Sky Survey (2MASS) and merger rates from the Illustris cosmological simulation project. Only 34 out of 75,000 realizations of the local Universe contained a detectable source, from which we concluded it was unsurprising that we did not detect any individual sources given our current sensitivity to GWs.Comment: 10 pages, 11 figures. Accepted by Astrophysical Journal. Please send any comments/questions to S. J. Vigeland ([email protected]

    Tests of general relativity from timing the double pulsar

    Get PDF
    The double pulsar system, PSR J0737-3039A/B, is unique in that both neutron stars are detectable as radio pulsars. This, combined with significantly higher mean orbital velocities and accelerations when compared to other binary pulsars, suggested that the system would become the best available testbed for general relativity and alternative theories of gravity in the strong-field regime. Here we report on precision timing observations taken over the 2.5 years since its discovery and present four independent strong-field tests of general relativity. Use of the theory-independent mass ratio of the two stars makes these tests uniquely different from earlier studies. By measuring relativistic corrections to the Keplerian description of the orbital motion, we find that the ``post-Keplerian'' parameter s agrees with the value predicted by Einstein's theory of general relativity within an uncertainty of 0.05%, the most precise test yet obtained. We also show that the transverse velocity of the system's center of mass is extremely small. Combined with the system's location near the Sun, this result suggests that future tests of gravitational theories with the double pulsar will supersede the best current Solar-system tests. It also implies that the second-born pulsar may have formed differently to the usually assumed core-collapse of a helium star.Comment: Appeared in Science Express, Sept. 14, 2006. Includes supporting materia

    Observations and Modelling of Relativistic Spin Precession in PSR J1141-6545

    Full text link
    Observations of the binary pulsar PSR J1141-6545 using the Parkes radio telescope over 9.3 years show clear time-variations in pulse width, shape and polarization. We interpret these variations in terms of relativistic precession of the pulsar spin axis about the total angular momentum vector of the system. Over the nine years, the pulse width at the 50% level has changed by more than a factor of three. Large variations have also been observed in the 1400-MHz mean flux density. The pulse polarization has been monitored since 2004 April using digital filterbank systems and also shows large and systematic variations in both linear and circular polarization. Position angle variations, both across the pulse profile and over the data span, are complex, with major differences between the central and outer parts of the pulse profile. Modelling of the observed position angle variations by relativistic precession of the pulsar spin axis shows that the spin-orbit misalignment angle is about 110 deg and that the precessional phase has passed through 180 deg during the course of our observations. At the start of our observations, the line-of-sight impact parameter was about 4 deg in magnitude and it reached a minimum very close to 0 deg around early 2007, consistent with the observed pulse width variations. We have therefore mapped approximately one half of the emission beam, showing that it is very asymmetric with respect to the magnetic axis. The derived precessional parameters imply that the pre-supernova star had a mass of about 2 Msun and that the supernova recoil kick velocity was relatively small. With the reversal in the rate of change of the impact parameter, we predict that over the next decade we will see a reversed "replay" of the variations observed in the past decade.Comment: 45 pages, 19 figures, 6 tables, accepted by Astrophysical Journa

    Long-term timing and emission behavior of the young Crab-like pulsar PSR B0540-69

    Get PDF
    We present timing solutions and spin properties of the young pulsar PSR B0540-69 from analysis of 15.8 years of data from the Rossi X-Ray Timing Explorer. We perform a partially phase-coherent timing analysis in order to mitigate the pronounced effects of timing noise in this pulsar. We also perform fully coherent timing over large subsets of the data set in order to arrive at a more precise solution. In addition to the previously reported first glitch undergone by this pulsar, we find a second glitch, which occurred at MJD 52927 +/- 4, with fractional changes in spin frequency Delta nu/nu = (1.64 +/- 0.05) x 10(-9) and spin-down rate Delta(nu) over dot/(nu) over dot = (0.930 +/- 0.011) x 10(-4) (taken from our fully coherent analysis). We measure a braking index that is consistent over the entire data span, with a mean value n = 2.129 +/- 0.012, from our partially coherent timing analysis. We also investigated the emission behavior of this pulsar, and have found no evidence for significant flux changes, flares, burst-type activity, or pulse profile shape variations. While there is strong evidence for the much-touted similarity of PSR B0540-69 to the Crab pulsar, they nevertheless differ in several aspects, including glitch activity, where PSR B0540-69 can be said to resemble certain other very young pulsars. It seems clear that the specific processes governing the formation, evolution, and interiors of this population of recently born neutron stars can vary significantly, as reflected in their observed properties

    The NANOGrav 11 yr data set: Constraints on planetary masses around 45 millisecond pulsars

    Get PDF
    We search for extrasolar planets around millisecond pulsars using pulsar timing data and seek to determine the minimum detectable planetary masses as a function of orbital period. Using the 11 yr data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), we look for variations from our models of pulse arrival times due to the presence of exoplanets. No planets are detected around the millisecond pulsars in the NANOGrav 11 yr data set, but taking into consideration the noise levels of each pulsar and the sampling rate of our observations, we develop limits that show we are sensitive to planetary masses as low as that of the moon. We analyzed potential planet periods, P, in the range 7 days < P < 2000 days, with somewhat smaller ranges for some binary pulsars. The planetary-mass limit for our median-sensitivity pulsar within this period range is

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M⊙(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap

    Testing Theories of Gravitation Using 21-Year Timing of Pulsar Binary J1713+0747

    Get PDF
    We report 21-year timing of one of the most precise pulsars: PSR J1713+0747. Its pulse times of arrival are well modeled by a comprehensive pulsar binary model including its three-dimensional orbit and a noise model that incorporates short-and long-timescale correlated noise such as jitter and red noise. Its timing residuals have weighted root mean square similar to 92 ns. The new data set allows us to update and improve previous measurements of the system properties, including the masses of the neutron star (1.31 +/- 0.11 M-circle dot) and the companion white dwarf (0.286 +/- 0.012 M-circle dot) as well as their parallax distance 1.15 +/- 0.03 kpc. We measured the intrinsic change in orbital period, (P) over dot(b)(Int), is -0.20 +/- 0.17 ps s(-1), which is not distinguishable from zero. This result, combined with the measured (P) over dot(b)(Int) of other pulsars, can place a generic limit on potential changes in the gravitational constant G. We found that (G) over dot/G is consistent with zero [(-0.6 +/- 1.1) x 10(-12) yr(-1), 95% confidence] and changes at least a factor of 31 (99.7% confidence) more slowly than the average expansion rate of the universe. This is the best (G) over dot/G limit from pulsar binary systems. The (P) over dot(b)(Int) of pulsar binaries can also place limits on the putative coupling constant for dipole gravitational radiation kappa(D) = (-0.9 +/- 3.3) 10(-4) (95% confidence). Finally, the nearly circular orbit of this pulsar binary allows us to constrain statistically the strong-field post-Newtonian parameters Delta, which describes the violation of strong equivalence principle, and (alpha) over cap (3), which describes a breaking of both Lorentz invariance in gravitation and conservation of momentum. We found, at 95% confidence, Delta <0.01 and (3) <2 x 10(-20) based on PSR J1713+0747
    • …
    corecore