
A HIGH BRAKING INDEX FOR A PULSAR

R. F. Archibald1, E. V. Gotthelf2, R. D. Ferdman1, V. M. Kaspi1, S. Guillot3, F. A. Harrison4,
E. F. Keane5, M. J. Pivovaroff6, D. Stern7, S. P. Tendulkar1, and J. A. Tomsick8

1 Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montréal, QC H3A 2T8, Canada
2 Columbia Astrophysics Laboratory, 550 West 120th Street, New York, NY 10027-6601, USA

3 Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile
4 Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Pasadena, CA 91125, USA

5 SKA Organization, Jodrell Bank Observatory, Cheshire SK11 9DL, UK
6 Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550-9234, USA

7 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
8 Space Science Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720-7450, USA

Received 2015 December 16; accepted 2016 February 17; published 2016 March 1

ABSTRACT

We present a phase-coherent timing solution for PSRJ1640–4631, a young 206 ms pulsar using X-ray timing
observations taken with NuSTAR. Over this timing campaign, we have measured the braking index of
PSRJ1640–4631 to be n=3.15±0.03. Using a series of simulations, we argue that this unusually high braking
index is not due to timing noise, but is intrinsic to the pulsarʼs spin-down. We cannot, however, rule out
contamination due to an unseen glitch recovery, although the recovery timescale would have to be longer than
most yet observed. If this braking index is eventually proven to be stable, it demonstrates that pulsar braking
indices greater than three are allowed in nature; hence, other physical mechanisms such as mass or magnetic
quadrupoles are important in pulsar spin-down. We also present a 3σ upper limit on the pulsed flux at 1.4 GHz of
0.018 mJy.
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1. INTRODUCTION

Pulsars emit light by extracting energy from their rotational
kinetic stores. As such, their spin-down is expected to follow
the form (Manchester et al. 1985)

n n= -K , 1n˙ ( )

where ν is the spin frequency of the pulsar, ṅ the frequency
derivative, and K a constant of proportionality related to the
pulsarʼs moment of inertia and magnetic field structure (Gunn
& Ostriker 1969). Here, n is the braking index. In the standard
pulsar model of an unchanging magnetic dipole in a vacuum,
electrodynamics predicts a value of three (e.g., Manchester &
Taylor 1977). In more realistic models of a pulsar and its
magnetosphere, the braking index is predicted to always lie
between 1.8 and 3 (Melatos 1997). Values less than this can be
obtained by relaxing the various assumptions of the model—
e.g., allowing magnetic field evolution (Blandford &
Romani 1988), momentum loss due to a particle wind (Harding
et al. 1999), or a varying angle between the spin and magnetic
poles (Lyne et al. 2013).

Taking the time derivative of Equation (1) gives us the
following fundamental equation that contains only the braking
index and observable quantities:
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where n̈ is the second derivative of the spin frequency. A
measurement of n can be made only for the youngest pulsars
for which n̈ is large enough to detect on human timescales. As
such, only 8 pulsars of the ∼2400 known have measured
braking indices, with values ranging from 0.9±0.2 to
2.839±0.001 (Lyne et al. 2015 and references therein).

PSRJ1640–4631 was discovered as a pulsating X-ray
source in a NuSTAR survey of the Norma region of the
Galactic plane (Lemiere et al. 2009; Gotthelf et al. 2014). The
pulsar is located in the center of the supernova remnant G338.1
−0.0 and powers the pulsar wind nebula (PWN) HESS J1640
−465, first detected in very high energy gamma-rays and
thought to be the most luminous TeV source in our Galaxy
(Gotthelf et al. 2014). We undertook X-ray timing observations
of PSRJ1640–4631 starting shortly after discovery with the
aim of measuring its braking index.

2. OBSERVATIONS AND ANALYSIS

All X-ray observations presented in this work were taken
using NuSTAR, which consists of two co-aligned X-ray
telescopes sensitive to photons with energies from 3 to
79 keV (Harrison et al. 2013). NuSTAR observations of
PSRJ1640–4631 were typically 20–50 ks, and the observation
cadence can be seen in Figure 1. Level 1 data products were
obtained from HEASARC and reduced using nupipeline
v0.4.4. Photons from a circular region having a 30″ radius
centered on the source were extracted. To maximize the signal-
to-noise ratio of the pulse, we used only photons with energies
in the 3.0–55 keV range.
Photon arrival times were corrected to the solar system

barycenter using the Chandra position of PSRJ1640–4631, R.
A.=16h40m43 52, decl.=−46°31′35 4 (Lemiere et al. 2009)
using barycorr from HEASOFT v6.17 and v052 of the
NuSTAR clock file.
Photon arrival times were used to derive an average pulse

time-of-arrival (TOA) for each observation. The TOAs were
extracted using a maximum likelihood (ML) method. The ML
method compares a continuous model template of the pulse
profile to the computed phases of the photon arrival times from
an observation (Livingstone et al. 2009). To create the
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template, all observations were folded into a high signal-to-
noise profile. This high signal-to-noise profile was then fitted to
a Fourier model using the first two harmonics. Two harmonics
were chosen to optimally describe the pulse shape, as
determined by use of the H-test (de Jager et al. 1989). We
verified that TOAs extracted using a cross-correlation method
give consistent results. NuSTARʼs absolute timing calibration is
accurate to ±3 ms (Madsen et al. 2015), smaller than our
measurement uncertainties.

The TOAs were fitted to a standard timing model in which
the phase as a function of time t is described by a Taylor
expansion:

f f n n
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t t t t t
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This was done using the TEMPO2 (Hobbs et al. 2006) pulsar
timing software package. In Table 1, we present a fully phase-
coherent timing solution for PSRJ1640–4631 over the
NuSTAR observation campaign. This is the only solution that
provides a statistically acceptable fit, i.e., we have verified there
are no pulse counting ambiguities. The residuals, the difference
between our timing model and the observed pulse phases, can
be seen in Figure 1. In the top panel, we show these residuals
accounting only for ν and ṅ . The bottom panel shows the
residuals for the full timing solution, accounting for n̈ . Fitting
for an extra frequency derivative, n⃛ does not significantly
improve the fit with the F-test indicating a 52% probability of
the improvement of χ2 being due to chance. We measure

n =  ´ -¨ 3.38 0.03 10 22( ) s−3 corresponding to a braking
index of n=3.15±0.03, where the uncertainty represents the
68% confidence interval.
This measured braking index is 5σ higher than that expected

in the standard magnetic dipole scenario. In Figure 2, we show
all braking indices where the long-term electrodynamic spin-
down is believed to be dominant; note how PSRJ1640–4631 is
the only measurement greater than the canonical n=3
magnetic dipole line.

2.1. Timing Noise Simulations

A possible way to explain such a large measured braking
index is contamination from timing noise. Timing noise refers
to unexplained low-frequency modulations found in the timing
residuals of many, particularly young, pulsars (Arzoumanian

Figure 1. Timing residuals of PSRJ1640–4631 from MJD 56463 to 57298,
2013 September 29 to 2015 October 3, for the solution presented in Table 1.
The top panel shows the timing residuals subtracting only the contributions
from ν and ṅ with the dashed black line showing the fitted n̈ of
(3.38±0.03)×10−22 s−3. The bottom panel shows the residuals after
accounting for n̈ . The gray bands in both panels indicate the 1σ timing model
uncertainties.

Table 1
Phase-coherent Timing Parameters for PSRJ1640–4631

Dates (MJD) 56463.0–57298.8
Dates 2013 Sep 29–2015 Oct 3
Epoch (MJD) 56741.00000
ν (s−1) 4.843 410 287 0(5)
ṅ (s−2) −2.280 830(4)×10−11

n̈ (s−3) 3.38(3)×10−22

n∣ ⃛∣ (s−4) <1.4×10−30

rms residual (ms) 6.17
rms residual (phase) 0.030
cn

2/dof 0.98/46

Braking index, n 3.15(3)

Note. Figures in parentheses are the nominal 1σ TEMPO2 uncertainties in the
least-significant digits quoted. Upper limits are quoted at the 2σ level. The
source position was held fixed at the Chandra position.

Figure 2. All braking indices where the long-term electrodynamic spin-down is
believed to be dominant. The gray dotted line indicates a braking index of
three, that which is expected for a pure magnetic dipole. For PSRJ1846−0258
(Archibald et al. 2015) and PSRJ1119−6127 (Antonopoulou et al. 2015),
where the braking index changed following glitches, the gray arrows indicate
the direction of change following the glitch. All other braking indices are from
Lyne et al. (2015 and references therein).
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et al. 1994). Timing noise in radio pulsars has been observed to
be spectrally “red,” that is, having most power at low
frequencies (Arzoumanian et al. 1994). As such, it can
contaminate measurements of n̈ , and thus n (Hobbs
et al. 2010). The power spectral density (PSD) of timing noise
is often modeled as

F = +
-⎛

⎝
⎜⎜

⎞
⎠
⎟⎟f A

f

f
1 , 4

c

q

TN

2

2

2

( ) ( )

where A is the spectral density amplitude, fc the corner
frequency, and q the power-law index (Lasky et al. 2015). A q
of 0 represents a white noise power spectrum, whereas indices
of 2, 4, and 6 represent random walks in pulse arrival phase, the
pulse frequency, and frequency derivative, respectively.

To quantify the probability of timing noise biasing our
measurement of the braking index, we conducted a series of
simulations that aimed to determine whether any reasonable
form of red noise artificially results in a measurement of n>3,
given the observed (i.e., white) noise properties of the resulting
timing residuals. As timing noise in real pulsars can have PSDs
with many indices, we created 105 realizations of red noise and
injected them into simulated pulsar TOAs, with TOA
uncertainties, ν, and ṅ identical to that of the pulsar, but with
a braking index of n=3.

To do this, we used the simRedNoise plug-in of TEMPO2.
We simulated parameters on a grid, drawing 10 iterations from
each set of parameters. We simulated A ranging from 10−20 to
10−18 s2 yr−1 with 20 log-spaced steps, q between 0 and 6 with
25 linear steps, and fc from 10−3 to 100.5 yr−1 in 20 log-space
steps. The upper bound on A was chosen to ensure phase
connection was possible, as larger values of A precluded phase
connection more that 50% of the time, and hence are ruled out
by our observations.

After the noise injection, the new TOAs were fitted to the
full timing model to measure n, allowing ν, ṅ , and n̈ to vary.
We considered any iterations where the χ2 value indicated that
a probability of less than 1% was ruled out by our measured
residuals, as this would indicate unaccounted for noise. After
this, only 0.01% of all the simulations could produce a braking
index greater than three with the measured significance. The
parameter regime that gave this highest probability of
artificially producing a high braking index was when fc was
of the order the observing length with the highest values of A.
There is only a weak dependence on q, with larger values
producing more false positives.

Another way to check for the possible contamination of our
measured value of n by timing noise is by considering the third
frequency derivative. In our data, the third frequency derivative
is consistent with zero at the 1σ level. We ran another suite of
simulations within the parameter space described above
wherein we fitted up to a third frequency derivative. We note
that there is a covariance, with the second and third frequency
derivatives being anti-correlated. Only in 0.008% of simulated
sets of residuals can we reproduce a braking index significantly
greater than three without having a detectable third frequency
derivative.

These simulations indicate that only a very low level of
timing noise can be present in our data, and the measured
braking index of n=3.15±0.03 is highly unlikely to be due
to timing noise. We note that the assumed value of n=3 in our

simulations is conservative, since when assuming n<3, it is
even less likely for timing noise to result in a measured n>3.

2.2. Parkes Observations

In order to search for radio pulsations from
PSRJ1640–4631, we undertook observations with the 64 m
Parkes Telescope. Observations were performed in two
sessions totaling 14.96 hr at the position of PSRJ1640–4631
(Lemiere et al. 2009). Data were taken by observing with the
central beam of the 21 cm multi-beam receiver, using the BPSR
pulsar backend. These observations were taken on 2014 April
18 and 2015 April 27 (MJDs 56765 and 56775, respectively) at
center frequency 1382MHz over 400MHz of bandwidth,
divided into 1024 channels. The data from each channel were
detected and the two polarizations summed to form a time
series with 64 μs samples.
We searched these data using the known pulsar spin

frequency and frequency derivative from the phase-coherent
timing analysis found in this article. We searched over 4704
dispersion measures between 0 and 1600 pc cm−3. No signal
was found in these data, and so we quote an upper limit to the
pulsar flux at this frequency, using the radiometer equation for
the rms noise from the observing system:

s =
D

T

G n t f
, 5

p
rms

sys

obs

( )

where Tsys is the system temperature in Kelvin, G is the
receiver gain in K Jy−1, np is the number of polarizations, tobs is
the total integration time in seconds, and Δf is the observing
bandwidth in Hz. From this, we calculate a 3σ upper flux limit
of 0.018 mJy at 1.4 GHz. This upper limit assumes a 50% duty
cycle, with the upper limit scaling as -DC 1 DC( ) , where
DC is the duty cycle. This flux limit is low, but not unusually
so, especially when one considers that the estimated distance to
the source is ∼12 kpc.

3. DISCUSSION AND CONCLUSIONS

A possible contaminant to the measured braking index is a
long-term recovery from an unseen glitch prior to our
monitoring. If such a glitch occurred, a typical exponential
recovery would, in general, cause an artificially high value for
n̈ to be measured (e.g., Johnston & Galloway 1999; Hobbs
et al. 2010). Indeed, for pulsars with τc<105 years, there is a
clear preference for positive n̈ , compared to older pulsars that
are equally likely to have positive or negative n̈ (e.g., Hobbs
et al. 2010). If we assume an exponentially recovering glitch
contaminating a constant braking index, we can, from our
upper limit of n⃛ , place a lower limit on the decay timescale for
such a glitch to be t n= D -250 10 Hzd

83 days, where νd is
the size of the unseen decaying glitch. In Yu et al. (2013), of
the 107 glitches detected, 27 had a detected exponential
recovery. Of those, only 3 were longer than 200 days. We thus
cannot rule out contamination due to a prior unseen glitch
recovery as an explanation for the high measured braking
index, although the recovery timescale would have to be longer
than most yet observed. Ultimately, this hypothesis can be
tested by continued monitoring.
Measurements of braking indices could also be contaminated

by uncertainties in the pulsarʼs position, or proper motion
(Bisnovatyi-Kogan & Postnov 1993). The position of
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PSRJ1640–4631 is well determined by Chandra to a 3σ error
radius of 0 6 (Lemiere et al. 2009). This positional error at the
ecliptic latitude of PSRJ1640–4631 would add a 1.0 ms rms
signal to our timing residuals, far smaller than our measurement
uncertainties. For PSRJ1640–4631ʼs estimated distance of
8–13 kpc (Lemiere et al. 2009), and a typical pulsar kick
velocity of 300 km s−1 (Hansen & Phinney 1997), an
unmodeled proper motion would change the measured braking
index by less than one part in a million. Thus, neither of these
effects can account for our measured braking index.

The pulsarʼs high-luminosity PWN has been argued to be
powered by a relativistic outflow or wind from the neutron star.
Under this assumption, predictions for the pulsarʼs spin-down
history, and hence braking index, have been made (Gotthelf
et al. 2014). The 0.2–10 TeV luminosity of the PWN powered
by the source represents ∼6% of the pulsarʼs current spin-down
luminosity (Gotthelf et al. 2014). A pulsar whose spin-down is
driven solely by a particle wind would result in a braking index
of one (Michel 1969; Manchester et al. 1985). Furthermore, a
combination of magnetic dipole radiation and wind braking
would result in a braking index with a value between one and
three. In this case, the braking index as a function of ò, the
fraction of spin-down power due to a particle wind, is given by
(Lyne et al. 2015)


=

+
+n

2

1
1. 6( )

This implies a maximal expected braking index of n=2.89 for
PSRJ1640–4631. Indeed, a more thorough modeling of the
pulsar and PWN system suggested an even smaller braking
index, n≈1.9 (Gotthelf et al. 2014), clearly at odds with our
result.

A changing magnetic field has also been put forth as a
possibility for a braking index that is different from three by the
growth or decay of the field (Blandford & Romani 1988;
Gourgouliatos & Cumming 2015), or a change in the angle
between the magnetic and rotation axes (Lyne et al. 2013). In
this case, n is given by

n
n

a
a

= + +
⎛
⎝⎜
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B

B
3 2

tan
. 7

˙
˙ ˙ ( )

For the decaying field case, this would imply a magnetic field
decay rate of ∼200MG per century. This decay rate is very
close to that predicted in some magneto-thermal evolutionary
models (Viganò et al. 2013), and in this interpretation might be
providing direct observational evidence of a decaying magnetic
field. On the other hand, population synthesis studies find no
strong evidence for field decay in the radio pulsar population as
a whole (Faucher-Giguère & Kaspi 2006).

If a change in the alignment angle between the magnetic and
rotational axes is the cause of the anomalous braking index,
then either α is less than π/2 and the rotation and magnetic
axes are moving toward alignment, or α is greater than π/2 and
the rotation and magnetic axes are counter-aligning. If α is
changing on order of the rate of the Crab pulsar (Lyne
et al. 2013), the only pulsar for which such a change has been
measured, at ∼1° per century, this would imply that α is ∼5°
away from being an orthogonal rotator. This is at odds with the
pulse profile being single peaked, since an orthogonal rotator
would typically be seen to have emission as each pole enters
our line of sight. In general, the value of α for pulsars can be

independently determined by modeling of the gamma-ray or
radio pulse profiles. PSRJ1640–4631, however, is radio quiet;
see Section 2.2. There are also no detected gamma-ray
pulsations from PSRJ1640–4631 (Gotthelf et al. 2014), and
so the value of α is unknown for this source.
Another possibility to explain a braking index greater than

three is to invoke higher order multipoles (Pétri 2015). A pure
quadrupole, either a magnetic quadrupole, or a mass quadru-
pole leading to gravitational radiation (Blandford &
Romani 1988), would yield a braking index of 5 and could
coexist with the magnetic dipole to give a braking index
between 3 and 5. Analogous to the case of a wind, the fraction
of spin-down due to a quadrupole versus a dipole, òQ is
(Palomba 2000):

 =
-
-

n

n

3

5
. 8Q ( )

In our case, this implies ∼8% of the spin-down is due to
quadrupolar radiation. In the case of a mass quadrupole, this
would imply that the pulsar has an ellipticity of ∼0.005, which
cannot be reproduced by theoretically proposed dense matter
equations of state, for a neutron star rotating at 4.84 Hz
(Owen 2005). If such an ellipticity did exist, it would produce
gravitational waves having a maximum strain of

~ ´ -4 10
d

26 12 kpc( ) at twice the spin period of the pulsar

(Palomba 2000), which is far below the detection sensitivity of
current technology.
The existence of a magnetic quadrupole is in principle testable

with future X-ray polarimeter missions. X-ray polarization
measurements of neutron stars are in principle sensitive to the
magnetospheric configuration (van Adelsberg & Lai 2006;
Taverna et al. 2014), be it a quadrupolar field structure or a
change in the alignment of the spin and magnetic poles. The
specific magnetic field structure of pulsars has a strong impact
on the inferred magnetic field strength, as well as predicted radio
and gamma-ray pulse profiles (Pétri 2015). Thus, X-ray
polarimetric observations of PSRJ1640–4631 could help us
understand the origin of the pulsarʼs high n and shed light on the
range of possibilities of neutron-star magnetic field structure.
Since the first measurement of the Crabʼs braking index in

1972 (Boynton et al. 1972), we have known that various
physical mechanisms, such as angular momentum loss due to a
wind, can result in a pulsar braking index less than the
canonical dipole value. Our results for PSRJ1640–4631 now
show that other physics, such as the quadrupole moment of the
magnetic field, affect the evolution of this source, and likely
rotation-powered pulsars in general. Given that two other
young, high-magnetic field pulsars have experienced glitches
that resulted in a significant drop in the braking index
(Antonopoulou et al. 2015; Archibald et al. 2015), it is clear
that continuous study of braking indices provides an important
window into additional physical processes at work in the
youngest and most energetic of neutron stars.
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