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ABSTRACT

We present an analysis of high-precision pulsar timing data taken as part of the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) project. We have observed 17 pulsars for a span of roughly
five years using the Green Bank and Arecibo radio telescopes. We analyze these data using standard pulsar
timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms.
Sub-microsecond timing residuals are obtained in nearly all cases, and the best rms timing residuals in this set are
∼30–50 ns. We present methods for analyzing post-fit timing residuals for the presence of a gravitational wave
signal with a specified spectral shape. These optimally take into account the timing fluctuation power removed by
the model fit, and can be applied to either data from a single pulsar, or to a set of pulsars to detect a correlated
signal. We apply these methods to our data set to set an upper limit on the strength of the nHz-frequency stochastic
supermassive black hole gravitational wave background of hc(1 yr−1) < 7 × 10−15 (95%). This result is dominated
by the timing of the two best pulsars in the set, PSRs J1713+0747 and J1909−3744.

Key words: gravitational waves – methods: data analysis – pulsars: general – pulsars: individual (J0030+0451,
J0613-0200, J1012+5307, J1455-3330, J1600-3053, J1640+2224, J1643-1224, J1713+0747, J1744-1134,
J1853+1308, B1855+09, J1909-3744, J1910+1256, J1918-0642, B1953+29, J2145-0750, J2317+1439)

1. INTRODUCTION

The direct detection of gravitational radiation (or gravita-
tional waves (GW)) is currently a major goal in experimental
physics. As described by general relativity, GW are freely prop-
agating wave solutions to Einstein’s equation. Detecting GW
would confirm another key prediction of general relativity. GW
are expected to be generated by nearly any configuration of ac-
celerating mass, although due to the weakness of gravity, large
masses or high accelerations are required to radiate significant
GW. This means that astronomical objects are the only sources
expected to produce measurable GW, and that we can in turn
use these detections to learn about the GW sources themselves;
GW astronomy will provide an entirely new window through
which we can view the universe. Binary systems are expected
to account for a large fraction of the detectable GW signals, but
we cannot discount “exotic” or unexpected sources either.

One of the best tools we have for making precise astronomical
measurements is the timing of pulses from radio pulsars. The
pulse times of arrival can be analyzed via a model that counts
every single rotation of the star over years or even decades.

This provides detailed information about the neutron star itself
(via spin-down rate and spin irregularities), its binary orbit (via
orbital Doppler and relativistic effects), and astrometry. Timing
of double-neutron star binary systems has already provided
strong evidence for the existence of GW, through measurements
of orbital evolution induced by the generation of GW by the
binary system (Taylor & Weisberg 1989; Weisberg et al. 2010).
The medium through which the radio pulses travel from the
pulsar to Earth also affects the signal. This has been used
extensively to probe the ionized component of the interstellar
medium in a variety of ways (e.g., Rickett 1990). The presence
of GW along the line of sight also will affect the pulse travel
times. This forms the basis for the use of pulsars as gravitational
wave detectors.

The influence of GW on pulsar timing, and its potential use
in GW detection, was first noted over 30 years ago (Sazhin
1978; Detweiler 1979). A major step forward was provided
by Hellings & Downs (1983), who showed that a GW signal
will produce correlated timing fluctuations in a set of pulsars,
a concept that came to be known as a pulsar timing array
(PTA; Foster & Backer 1990). A second major advance was the
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discovery of millisecond pulsars (Backer et al. 1982)—the high
spin rate and stability of these objects improves GW sensitivity
by orders of magnitude compared with canonical ∼1 s pulsars.
Pulsar timing is most sensitive to GW with period comparable
to the observational time span, typically 1–10 years, so the GW
frequency is in the nanohertz band. In this frequency range the
brightest expected sources are supermassive black hole (SMBH)
binaries, which may be visible either as a stochastic background
(e.g., Jaffe & Backer 2003; Sesana et al. 2008) or as individual
sources (Sesana et al. 2009). A number of previous upper limits
have been placed (Kaspi et al. 1994; Jenet et al. 2004, 2006;
van Haasteren et al. 2011), but no successful detection has yet
been accomplished. The topic continues to attract attention and
a number of dedicated PTA research projects are now active
worldwide.

In this paper, we present new high-precision timing obser-
vations of 17 millisecond pulsars, covering a five-year time
span. These data were obtained as part of the North American
Nanohertz Observatory for Gravitational Waves (NANOGrav)
project,17 using the two largest single-dish telescopes available,
Arecibo Observatory and the NRAO Green Bank Telescope
(GBT). In Section 2 we describe the observational setup and
data set. In Section 3 we present our methods and results for the
determination of timing models. In Section 4 we present a time-
domain algorithm for measuring the cross-correlation between
pairs of post-fit residuals, and apply this to our timing data to
place limits on the stochastic gravitational wave background.
We discuss the astrophysical implications of these results in
Section 5 and summarize our findings in Section 6.

2. OBSERVATIONS

The observations presented here were carried out over a five-
year period, from 2005 to 2010, as part of a program specifically
designed to measure or constrain the nHz-frequency stochastic
gravitational wave background. The sources were observed with
one or both of the 305 m NAIC Arecibo Observatory or the
100 m NRAO GBT, with a typical observational cadence of
four to six weeks between sessions (see Figure 1). Scheduling
at each observatory was independent, and the sessions were
typically not performed simultaneously at the two telescopes.

These sources were selected from the known population of
bright millisecond pulsars (MSPs), excluding those found in
globular clusters. Source selection was performed with the goal
of obtaining the highest timing precision possible, to maximize
sensitivity to gravitational waves. Due to its higher gain, Arecibo
was used to observe all sources in its visible portion of the sky
(∼0◦–38◦ declination), while sources outside this range were
observed with the GBT, down to its minimum declination of
∼−45◦. One source presented in this paper, J1713+0747, was
observed with both telescopes.18

Each pulsar was observed at two widely separated radio fre-
quencies in order to track variation in dispersion measure (DM;
see Section 3.2). As the different frequency measurements use
different receivers, these observations are also not simultane-
ous. The choice of receivers used to observe any given pulsar
was determined from the availability and performance of the
receiver systems at each telescope, and from the spectral index

17 http://www.nanograv.org
18 Another bright MSP, PSR B1937+21, is also observed with both telescopes
as part of this project. We have for now excluded it from this analysis due to its
well-documented high levels of spin noise (e.g., Kaspi et al. 1994) and
interstellar medium systematics (e.g., Ramchandran et al. 2006).

of the pulsar. At Arecibo, multi-frequency data are obtained
in a single observing session, within ∼1 hr for each source.
At the GBT, the different frequencies were observed up to ∼1
week apart. In a given epoch the observing time per frequency
band for each source was anywhere from 15 to 45 minutes,
with shorter integration times in general at Arecibo. The tele-
scopes and frequencies used to observe each source, along with
its basic physical parameters such as spin period and DM, are
listed in Table 1. Three pulsars in this set (PSRs J1853+1308,
J1910+1256, and B1953+29) were originally observed as part
of a different project at Arecibo (Gonzalez et al. 2011) and con-
sequently only have single-band data for most of the time span.
All receiver systems used at 800 MHz and above are sensitive to
orthogonal linear polarizations. The 430 MHz system at Arecibo
is sensitive to dual circular polarizations.

At each observatory, site time is kept by a local hydrogen-
maser-based clock. Clock comparison systems monitor and
record the difference between site time and the GPS time signal.
We use these records to later correct pulse times of arrival first
from site time to GPS time, then to the “retrospective” realiza-
tion of Terrestrial Time produced by the Bureau International
des Poids et Mesures (e.g., Guinot 1988). The analysis pre-
sented here uses the 2011 version of the timescale, also known
as TT(BIPM11).

All observations were performed using the identical Astro-
nomical Signal Processor (ASP) and Green Bank Astronomical
Signal Processor (GASP) pulsar backend systems (Demorest
2007) at Arecibo and the GBT, respectively. These systems
perform real-time coherent dedispersion, full-Stokes detection,
and pulse period folding in software, using ∼20-node Linux-
based computer clusters. Channelized voltage data are supplied
to the cluster from a SERENDIP-V FPGA board19 controlled
by a Compact PCI single-board computer. The SERENDIP-V
board performs analog-to-digital conversion and a digital
polyphase filterbank operation to split a 128 MHz bandwidth,
dual-polarization signal input from the telescope into 32 4 MHz
wide channels. Both the initial digitization of the signal and
the channelized output use 8 bit complex quantization. Further
details of the hardware and real-time software used in these
observations were described by Demorest (2007). While the
4 MHz channelization provides a minimum time resolution of
250 ns, the final time resolution depends on the pulse period
and number of profile bins used to average the profile—in this
case, either 2048 (GBT) or 4096 (Arecibo) bins were used.
Profiles were typically integrated for one minute (Arecibo) or
three minutes (GBT). The total bandwidth processed varied with
pulsar and observing frequency, limited by either the real-time
computational load or the receiver bandpass. A maximum of
64 MHz was used in most cases, with smaller bandwidths down
to ∼20 MHz used for low-frequency or high-DM observations.

3. TIMING ANALYSIS

In this section, we describe the procedures used in the
timing portion of the data analysis. These can be split into
two main areas: analysis dealing with pulse profiles, including
polarization calibration and determination of pulse times of
arrival (Section 3.1); and fitting a physical timing model
to the arrival times (Section 3.2). The further analysis step
of determining GW background limits is discussed later, in
Section 4.

19 https://casper.berkeley.edu/galfa/
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Figure 1. Overview of timing residuals for all sources, showing observational cadence and coverage during the five-year time span. The gap in 2007 was due to an
extended maintenance period at both telescopes. The full scale of the y-axis is 10 μs in all cases.

3.1. Calibration and Time of Arrival Estimation

As discussed in Section 2, the data products resulting from
an observing session are a set of full-Stokes pulse profiles
integrated over 4 MHz radio bandwidth and one to three minutes
of time, into either 2048 or 4096 pulse phase bins. Following

standard pulsar data analysis procedures, we aim to determine
from the profile data a set of pulse times of arrival (TOAs),
i.e., times at which the apparent rotational phase of the pulsar
passes through some fiducial point. This process involves several
major steps: polarization calibration, template profile creation,
additional profile averaging, and finally TOA measurement. For
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Table 1
List of Observed Millisecond Pulsars: Basic Parameters and Observing Setups

Source P dP/dt DM Pb Average Flux Density (mJy)a Obs

(ms) (10−20) (pc cm−3) (d) (327 MHz) (430 MHz) (820 MHz) (1.4 GHz) (2.3 GHz)

J0030+0451 4.87 1.02 4.33 · · · · · · 19.9 · · · 1.4 · · · AO
J0613–0200 3.06 0.96 38.78 1.2 · · · · · · 5.3 2.0 · · · GBT
J1012+5307 5.26 1.71 9.02 0.6 · · · · · · 7.6 3.9 · · · GBT
J1455–3330 7.99 2.43 13.57 76.2 · · · · · · 2.0 1.1 · · · GBT
J1600–3053 3.60 0.95 52.33 14.3 · · · · · · 3.1 2.3 · · · GBT
J1640+2224 3.16 0.28 18.43 175.5 · · · 10.9 · · · 1.0 · · · AO
J1643–1224 4.62 1.85 62.42 147.0 · · · · · · 12.3 4.2 · · · GBT
J1713+0747 4.57 0.85 15.99 67.8 · · · · · · 8.8 6.3 3.6 AO,GBT
J1744–1134 4.07 0.89 3.14 · · · · · · · · · 7.6 2.6 · · · GBT
J1853+1308 4.09 0.87 30.57 115.7 · · · · · · · · · 0.2 · · · AO
B1855+09 5.36 1.78 13.30 12.3 · · · 24.6 · · · 4.0 · · · AO
J1909–3744 2.95 1.40 10.39 1.5 · · · · · · 3.4 1.4 · · · GBT
J1910+1256 4.98 0.97 34.48 58.5 · · · · · · · · · 0.2 · · · AO
J1918–0642 7.65 2.57 26.60 10.9 · · · · · · 4.5 1.8 · · · GBT
B1953+29 6.13 2.97 104.50 117.3 · · · · · · · · · 1.0 0.1 AO
J2145–0750 16.05 2.98 9.03 6.8 · · · · · · 12.3 3.2 · · · GBT
J2317+1439 3.45 0.24 21.90 2.5 32.2 9.9 · · · · · · · · · AO

Note. a The presence of flux density values indicate the frequencies at which each source is observed.

this work, we have performed all of these steps using two
independent versions of pulsar data processing software, the
first based on the PSRCHIVE20 software (Hotan et al. 2004),
and the second based on ASPFitsReader (Ferdman 2008). This
procedure provides an important cross-check for errors in the
analysis software that might otherwise be hard to detect. Both
analysis pipelines performed the same procedures, aside from
template determination which was done only via PSRCHIVE.

Pulsar radio emission is typically highly polarized. While
our current analysis relies only on the total intensity profiles
for TOA determination, due to the high degree of polarization,
calibration errors can still distort the intensity profile shape,
leading to a TOA bias (e.g., van Straten 2006). A complete
description of the instrumental response to a polarized signal
is provided by the Mueller matrix, which is a radio-frequency-
dependent linear transformation from the intrinsic to observed
Stokes parameters (Heiles et al. 2001; van Straten 2004). While
we plan in future work to apply full Mueller matrix calibration
to these data, for the current analysis we correct only the
leading order terms, differential gain and phase between the
two polarization components of the telescope signal. This is
done via an injected calibration signal; immediately before or
after each pulsar observation, a noise diode switched at 25 Hz
is coupled into both polarization signal paths and measured
with the pulsar backends. This provides a constant reference
power versus frequency that is used to scale the pulsar data. The
equivalent flux density of the calibration signal is determined
separately for each polarization by observing the noise diode
along with a bright, unpolarized quasar of known flux density
(B1442+101 at Green Bank, J1413+1509 at Arecibo). This then
provides a second scaling to convert the pulsar data to flux
density units (Jy) separately in each linear (or circular for certain
receivers) polarization. The two calibrated total power terms
are then added together to form the total intensity (“Stokes I”)
profile, and the polarized profiles are not used further in this
analysis.

The calibrated pulse profiles are used to determine pulse
TOAs and their uncertainties by fitting for a pulse phase

20 http://psrchive.sourceforge.net

shift between each profile and a standard “template” profile
(Taylor 1992). The template ideally is a noise-free representation
of the average pulse profile shape; any noise present in the
template, especially if correlated with noise in the profiles,
can bias the TOAs (Hotan et al. 2005). For this work we
determine template profiles from our measured data in a two-
step process: the profiles are first roughly aligned using a
single-Gaussian template, then are summed together using
weights to optimize the signal-to-noise ratio (S/N) in the
final full-sum profile (see Demorest 2007, Equation (2.10)).
We then apply a translation-invariant wavelet transform and
thresholding (Coifman & Donoho 1995) to the profile to remove
its noise (Figure 2). The procedure is then iterated once, now
using the new template for alignment, to produce the final
template profiles used for determining TOAs. Before TOA
determination, the template profiles are rotated so that the phase
of their first harmonic component is zero. The wavelet noise
removal procedure is implemented in the PSRCHIVE program
psrsmooth. In this way, we obtained one template per pulsar
per receiver used to observe it. While all other processing steps
in this section were performed independently by both software
pipelines, for consistency the same set of templates was used in
both cases.

The standard template-matching procedure used for TOA
determination in this analysis is known to suffer problems
when applied to low-S/N data (Hotan et al. 2005). Therefore,
it is useful to average profiles over as much time and radio
bandwidth as possible to maximize the S/N before forming
TOAs, while still retaining enough resolution to measure all
appropriate instrumental or astrophysical effects. In this analysis
we will retain the native instrumental frequency resolution
(see Section 3.2), and have chosen to average over time all
profiles in a given frequency channel from each observing epoch
(typically 30 minutes). TOAs are then measured for each average
profile, resulting in a set of ∼20–30 TOAs (one per 4 MHz
frequency channel) per each dual-receiver pair of observing
epochs. The total number of TOAs for each pulsar are listed in
Table 2. As previously mentioned, we computed TOAs using
two independent analysis pipelines. After verifying that the two
pipelines produced consistent results, we focus the remainder of

4
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Figure 2. Full-sum profile and template profile for J1713+0747 at 1400 MHz. The top panel shows the full-sum profile at full scale. The middle panel shows the
full-sum profile (points) and wavelet-denoised template version (line). The bottom panel shows the residual difference between the full-sum profile and template. The
reference phase for TOA determination is at zero turns, in the center of the plot.

Table 2
Overview and Results from Timing Model Fits

Source No. of No. of Parameters rms Fit χ2 Epoch-averaged rms / median σt (μs)c Figure Nos.

TOAsa DM Profile Otherb (μs) Low-bandd High-band Combined

J0030+0451 545 20 26 7 0.604 1.44 0.019/0.38 0.328/0.35 0.148/0.37 4
J0613–0200 1113 34 45 12 0.781 1.21 0.021/0.17 0.519/0.50 0.178/0.30 5
J1012+5307 1678 52 53 14 1.327 1.40 0.192/0.69 0.345/0.65 0.276/0.67 6
J1455–3330 1100 37 53 12 4.010 1.01 0.363/1.66 1.080/2.97 0.787/2.35 7
J1600–3053 625 21 31 14 1.293 1.45 0.233/0.52 0.141/0.27 0.163/0.34 8
J1640+2224 631 23 26 12 0.562 4.36 0.057/0.20 0.601/0.52 0.409/0.22 9
J1643–1224 1266 40 48 13 2.892 2.78 0.589/0.74 1.880/0.62 1.467/0.67 10
J1713+0747 2368 50 111 15 0.106 1.48 0.092/0.14 0.025/0.05 0.030/0.08 3
J1744–1134 1617 54 49 7 0.617 3.58 0.139/0.19 0.229/0.26 0.198/0.22 11
J1853+1308 497 0 34 12 1.028 1.16 0.271/0.61 0.096/1.38 0.255/0.61 12
B1855+09 702 29 21 14 0.395 2.19 0.277/0.49 0.101/0.25 0.111/0.41 13
J1909–3744 1001 31 37 14 0.181 1.95 0.011/0.08 0.047/0.15 0.038/0.09 14
J1910+1256 525 0 34 14 1.394 2.09 0.712/0.36 0.684/0.89 0.708/0.40 15
J1918–0642 1306 49 37 12 1.271 1.21 0.129/0.52 0.211/0.75 0.203/0.62 16
B1953+29 208 0 27 12 3.981 0.98 1.879/1.49 0.543/3.33 1.437/1.49 17
J2145–0750 675 20 37 12 1.252 1.97 0.068/0.57 0.494/0.81 0.202/0.57 18
J2317+1439 458 30 12 15 0.496 3.03 0.373/0.21 0.150/0.18 0.251/0.19 19

Notes.
a One TOA per frequency channel per epoch.
b “Other” parameters are all spin, astrometric and binary parameters as described in Section 3.2.
c Statistics computed from residuals averaged down to one point per receiver per epoch. See the text for details.
d Note that in these results, the low-frequency rms tends to be suppressed due to the DM(t) fit.

the analysis on the PSRCHIVE-produced data; all further results
presented in this paper are specific to these data. These TOAs
are the inputs for the next part of the analysis procedure, fitting
the timing model. The entire set of TOAs used in this analysis
can be obtained as an electronic supplement to this paper.21

21 http://www.cv.nrao.edu/∼pdemores/nanograv_data

3.2. Timing Model Fit

The second part of the timing analysis is to fit the measured
pulse TOAs for each pulsar to a physical timing model. The
timing model predicts the apparent rotational phase of a pulsar
based on a set of physical parameters describing the star’s
rotation (spin period, spin-down rate), astrometry (position,

5
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proper motion, parallax), binary orbital motion, and general
relativistic effects such as Shapiro delay. The model prediction
is compared to the measured TOAs and best-fit parameter
values are determined via χ2 minimization. This procedure is
a fundamental part of pulsar astronomy and has been described
many times in the literature (see, for example, Lorimer &
Kramer 2004). For all results presented here, we use the standard
TEMPO22 timing analysis software. We have performed a
detailed comparison between this analysis and one done on
this data set using the newer TEMPO223 package (Hobbs et al.
2006), and obtained nearly identical results. For this data set,
the rms difference between the TEMPO and TEMPO2 residuals
is typically ∼1 ns.24 All results presented here used the JPL
DE405 solar system ephemeris25 to determine positions of the
Sun and Earth relative to the solar system barycenter.

As the main goal of this analysis is to detect or limit the
nHz gravitational wave background, a detailed discussion of
each pulsar’s timing model parameters and the astrophysical
significance of the results will not be presented here. The
TEMPO parameter files containing the model parameters and
fit results can be obtained along with the TOAs in the electronic
supplement to the paper. However, the overall strategy for fitting
the timing models can be described as follows:

1. The average pulsar spin frequency and frequency deriva-
tive (spin-down) were always fit parameters. No higher
frequency derivatives were included.

2. All five astrometric terms—two sky coordinates, two com-
ponents of proper motion, and parallax—were always fitted
parameters.

3. Binary systems were fit for all five Keplerian parameters,
using ether the “ELL1” or “DD” (Damour & Deruelle
1985) timing models as appropriate. Additional relativistic
or secular orbital terms were added only if the timing was
significantly improved.

In addition to the model parameters just described, the timing
fit also included terms to correct for time-variable DM and
frequency dependence of the pulse profile shape. Dispersion
is a propagation effect caused by the travel of the radio
pulses through the ionized interstellar medium (ISM). This
causes a radio frequency-dependent shift in pulse arrival time
proportional to DMν−2. Astrophysically, DM represents the
integrated column density of free electrons along the line of sight
to the pulsar. Due to relative motion of the Earth and the pulsar,
the effective path through the ISM changes with time, hence
the DM varies in a stochastic manner (e.g., Ramchandran et al.
2006). For this experiment, we obtained (non-simultaneous)
dual-frequency data as described in Section 2 specifically to
measure and remove this effect from the timing. We have done
this by including a piecewise-constant DM(t) function in the
same fit that determines the other timing model parameters.
For each observing epoch, a window of span up to 15 days is
defined over which an independent DM offset is fit for. Epochs
for which no dual-frequency data exist within a 15 day range
were excluded from the analysis. This leads to a relative DM
versus time measurement for each pulsar, as shown in Figure 3.
The reference epoch for DM variation is the epoch of the first
TOA in the lowest frequency channel. Due to variation in the
observing bandwidth, this is not necessarily the first observing

22 http://tempo.sourceforge.net
23 http://tempo2.sourceforge.net
24 http://www.cv.nrao.edu/∼pdemores/nanograv_data/tempo_compare.html
25 http://iau-comm4.jpl.nasa.gov/de405iom/

epoch. As previously noted, PSRs J1853+1308, J1910+1256
and B1953+29 have mostly single-band observations, so the
DM variation has not been modeled for these three sources.

During the course of this analysis, we discovered additional
radio frequency-dependent trends in pulse arrival times that
were not well described by the ν−2 dispersion relation. We
attribute these to the intrinsic evolution of the pulse profile
shape with frequency (e.g., Kramer et al. 1999). The interstellar
medium is another possible cause; however, since the effect does
not appear to be time-variable an ISM explanation seems less
likely. Regardless of its physical origin, any profile shape change
versus frequency can lead to systematic TOA biases as follows:
Although we have used separate template profiles per receiver,
within each receiver band the template profile is constant. If
the true profile shape is changing versus frequency, this will
cause small but measurable systematic effects. To correct for
these biases, we have included as free parameters in the timing
fit a constant (in time) offset—also known as a “jump”—for
each 4 MHz frequency channel. These constant-in-time per-
channel offsets are completely covariant with a constant-in-time
dispersion measure, therefore this analysis can not determine
both parameters uniquely. However, DM variations in the data
set as described above can still be determined.

A summary of the timing analysis and results is presented in
Table 2. For each pulsar, the total number of TOAs, and the total
number of fit parameters is given. These are divided into those
relating to the DM variation, frequency-dependent terms, and
the other standard spin, astrometric and binary parameters. The
success of the timing model fit can be characterized by analyzing
the post-fit residuals, i.e., the difference between the observed
and model-predicted arrival times. The uncertainty-weighted
rms residual value and normalized χ2 values as determined
directly from the fit are listed in the table. The majority of χ2

values fall near 1, but are as high as ∼4 in some cases. These
values have been computed without the use of any multiplicative
or additive modifications to the TOA uncertainties.26

Traditionally, pulsar timing results have been presented using
TOAs that come from an average of all data taken during a
given day. Here, our fit procedure requires the multi-frequency
data be kept separate, so we cannot perform this averaging pre-
fit. To facilitate comparison with previous work, the columns
in Table 2 under the “epoch-averaged” heading give statistical
properties of the residuals after first averaging the raw post-fit
residuals down to one point per receiver per epoch. Weighted
rms and median uncertainty are then computed from the epoch-
averaged residuals. The epoch-averaged statistics of the low-
frequency and high-frequency bands for each pulsar are shown
separately as well as the combined value using all the data. Due
to the DM(t) fit, the low-frequency rms tends to be suppressed,
making it less useful as a simple characterization of the timing.
This effect can be illustrated by comparing the low-frequency
rms with the median uncertainty—in most cases, the median
uncertainty is at least a factor of several larger than the rms.
However, the high-frequency rms is not affected in the same
way, and is generally comparable with the median uncertainty.

The two best pulsars in the set, PSRs J1713+0747 and
J1909−3744, both have epoch-averaged rms in the ∼30–50 ns
range with comparable values for both the high-frequency and
combined versions of this statistic. Timing residuals, in both raw
and daily averaged forms, along with the measured DM(t) values

26 The “EFAC” and “EQUAD” options, respectively, in TEMPO. These
parameters were sometimes used in previous timing analyses to compensate
for unexplained systematic errors in TOAs or their uncertainties.
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Figure 3. Timing summary for PSR J1713+0747. The top panel shows residuals from the multi-frequency TOAs used in the timing fit. The middle panel shows the
same residuals averaged down to one point per band per day. The bottom panel shows the measured variation in DM as a function of time.

are shown in Figure 3 for PSR J1713+0747, and in Figures 4–19
for the other sources. The figure number for each pulsar’s data
is also listed in the final column of Table 2.

4. GRAVITATIONAL WAVE ANALYSIS

The presence of gravitational waves (GW) along the line-of-
sight from a pulsar to Earth alters the effective path length in a
time-variable manner, resulting in extra perturbations in pulsar
timing residuals (Detweiler 1979). The observed amplitude of a
single pulsar’s timing residuals can therefore be used to limit the
strength of any GW that may exist (Kaspi et al. 1994; Jenet et al.
2006). However, as an observed timing perturbation could also
arise from a number of non-GW sources, this method can not
be used to definitively confirm the presence of GW. It was first
noted by Hellings & Downs (1983) that a GW signal induces
correlated variations in the timing residuals of a set of pulsars.
The form of this correlation is unique to GW among the expected
perturbations, and attempting to detect it is the basis for most
current PTA efforts (van Haasteren et al. 2011; Yardley et al.
2011), including this work.

In this analysis, we will search for a stochastic gravitational
wave background (GWB) signal in the pulsar timing results
presented in Section 3. We assume the GWB will take the
form which has become standard in this field—a power-law
frequency spectrum and isotropic angular distribution. This
signal is expected to be generated by the sum of unresolved
SMBH binary systems with masses of ∼108 M� and orbital
periods of 1–10 years. In this case, the characteristic strain
spectrum is expected to have a “red” power-law spectral index
α = −2/3 (e.g., Jaffe & Backer 2003; Sesana et al. 2008),

with a possible break near 10 nHz due to the finite number of
sources (Sesana et al. 2008). A GWB of this form could also be
generated from cosmic superstrings, with α = −7/6 (Damour
& Vilenkin 2005; Siemens et al. 2007), or as inflationary “relics”
with spectral index α = −1 (Grishchuk 2005). Any GW signal
will produces correlation in the timing fluctuations of pairs of
pulsars. In the specific case of an isotropic GWB, the amount
of correlated power is a function only of the angular separation
of the two pulsars in the pair, and has a characteristic functional
form first predicted by Hellings & Downs (1983).

In this paper, we adopt definitions of the expected gravita-
tional wave spectrum and its effect on timing consistent with pre-
vious papers on the topic (e.g., Jenet et al. 2006; van Haasteren
et al. 2011). In particular, we assume a power-law spectrum in
characteristic strain:

hc(f ) = Af0

(
f

f0

)α

. (1)

Here, Af0 is the unknown GW spectrum amplitude at a reference
frequency f0. For consistency with previous literature, we set
f0 = 1 yr−1, and will call the resulting amplitude A1. This
GWB produces a fluctuation y(t) in the pulse times of arrival
from a given pulsar, with power spectrum given by

Sy(f ) = 1

12π2

1

f 3
hc(f )2. (2)

It is important to note that y(t) represents the pre-fit contribution
of the GW signal to the pulse TOAs. The effect of the timing
model fit will be considered in Section 4.1. Also important is
that this formulation of Sy(f ) is consistent with that used by

7
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Figure 4. Timing summary for PSR J0030+0451, see Figure 3 for details.
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Figure 5. Timing summary for PSR J0613−0200, see Figure 3 for details.
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Figure 6. Timing summary for PSR J1012+5307, see Figure 3 for details.
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Figure 7. Timing summary for PSR J1455−3330, see Figure 3 for details.
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Figure 8. Timing summary for PSR J1600−3053, see Figure 3 for details.
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Figure 9. Timing summary for PSR J1640+2224, see Figure 3 for details.
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Figure 10. Timing summary for PSR J1643−1224, see Figure 3 for details.
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Figure 11. Timing summary for PSR J1744−1134, see Figure 3 for details.
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Figure 12. Timing summary for PSR J1853+1308, see Figure 3 for details.
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Figure 13. Timing summary for PSR B1855+09, see Figure 3 for details.

Jenet et al. (2006), Hobbs et al. (2009), and van Haasteren
et al. (2011)27 but is a factor of three smaller than that used by
Jenet et al. (2005). This results in a factor of

√
3 difference in

limits on A1 depending on which definition is in use, and care

27 While the equations given by van Haasteren et al. (2011) used the Jenet
et al. (2005) definition, their published limit of A1 < 6 × 10−15 was computed
using the same scaling as our Equation (2) (R. van Haasteren 2012, private
communication).

should therefore be taken when directly comparing the various
published limits.

It is useful to compute the expected time-domain correlation
between pairs of timing fluctuations from pulsars a and b:

C
(ab)
y,ij = E{ya(ti)yb(tj )} = Cy(ti − tj )ζ (θab). (3)

Here, θab is the angular separation between pulsars a and
b, and ζ (θab) is the Hellings–Downs function describing the

12



The Astrophysical Journal, 762:94 (25pp), 2013 January 10 Demorest et al.

-30
-20
-10

 0
 10
 20
 30

 2005  2006  2007  2008  2009  2010

R
es

id
ua

l (
us

)

Year

-3
-2
-1
 0
 1
 2
 3

 2005  2006  2007  2008  2009  2010

R
es

id
ua

l (
us

)

Year

-1.8
-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0

 2005  2006  2007  2008  2009  2010D
el

ta
 D

M
 (

10
-3

 p
c 

cm
 -3

)

Year

Figure 14. Timing summary for PSR J1909−3744, see Figure 3 for details.
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Figure 15. Timing summary for PSR J1910+1256, see Figure 3 for details.

expected angular correlation for a isotropic GWB. Cy(τ ) is
the GW signal autocorrelation (Fourier transform of Sy(f )),
and can be computed analytically for a power-law spectrum
as presented by van Haasteren et al. (2009, 2011). Addition-
ally, here and in the following, E {·} represents the statisti-
cal expectation value, or average over many realizations of
the enclosed quantity. This description assumes the GW signal

follows wide-sense stationary statistics (e.g., Papoulis & Pillai
2002).

In the following sections we first present methodology for
analyzing the timing residuals from Section 3, and discuss the
effect that fitting the timing model has on the statistics of post-fit
residuals. We will then apply these methods to first determine
an upper limit to the stochastic GWB amplitude using a single

13
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Figure 16. Timing summary for PSR J1918−0642, see Figure 3 for details.
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Figure 17. Timing summary for PSR B1953+29, see Figure 3 for details.

pulsar, and then attempt to detect or limit the GWB by looking
for angular correlations.

4.1. Effect of the Timing Model Fit

In order to use pulsar timing data to detect gravitational waves,
one must account for the fact that the pulsar parameters (spin
period, astrometric parameters, etc.) are not known a priori, and

need to be determined from the same data that are used for
GW detection. Especially in the case of red GW spectra, a large
fraction of the GW signal power is covariant with the “long-
term” pulsar parameters such as spin period and spin-down rate,
and cannot be unambiguously separated from these intrinsic
pulsar features. Previous analyses have typically dealt with this
by decomposing timing residuals using a set of polynomials
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Figure 18. Timing summary for PSR J2145−0750, see Figure 3 for details.
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Figure 19. Timing summary for PSR J2317+1439, see Figure 3 for details.
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of cubic and higher order (Kaspi et al. 1994; Jenet et al.
2006). These are approximately orthogonal to the rest of the
timing fit, and capture most of the low-frequency GW power.
Recent analyses by van Haasteren et al. (2009, 2011) use a
Bayesian framework to limit or detect GW signals in the data,
marginalizing over the timing model parameters. Yardley et al.
(2011) use an extensive series of simulations to characterize
the effect of timing parameter fitting on the GW signal in the
frequency domain.

In this work, we perform the GW analysis in a separate step
from the timing fit, while using the properties of the timing fit
to both determine how much GW power is absorbed by it, and
how to best detect or limit that which remains. This is built
around a computation of the statistics (covariance matrix) of the
post-fit residuals. This analysis draws heavily on that presented
by Demorest (2007), which can be referred to for additional
discussion. Further detailed discussion and application of this
method will be presented by J. Ellis et al. (2012, in preparation).
It is also interesting to note that a very similar calculation
appears in the Bayesian method presented by van Haasteren
et al. (2009), as a means of marginalizing over the timing fit
“nuisance” parameters.

To begin we note that the fit that determines the pulsar
parameters is a weighted least-squares minimization, which in
matrix terms is the solution of the normal equations (see, for
example, Press et al. 1992):

AT W2Aa = AT W2y. (4)

Here, y is the vector of input data (sometimes called “pre-
fit residuals”), A is the fit design matrix whose columns are
the fit basis functions, a is the vector of fit parameter values,
and W is the weighting matrix. In a standard weighted least-
squares fit such as is used in this paper, W is a diagonal
matrix whose entries are calculated from the TOA uncertainties,
Wii = σ−1

i . However, we write Equation (4) in this general form
to emphasize that the following methods are equally valid for
a generalized least-squares fit in which W can have non-zero
off-diagonal elements. The generalized approach has recently
been proposed for pulsar timing analyses as a way of handling
correlated noise in the timing data (Coles et al. 2011). In the
generalized case, W2 is the inverse of a non-diagonal noise
covariance matrix.

The post-fit residuals r = y − Aa = Ry are therefore a linear
function of the input data, and can be determined by applying
the residual projection operator R:

R = I − A(AT W2A)−1AT W2. (5)

A key feature of writing the analysis in this form is that although
R does depend of the weighting matrix W, it does not depend on
the data values y. Therefore, for a given pattern of weights (or
uncertainties), the action of the fit can be studied independent
of a specific data realization. This feature can be used to
eliminate dependence on simulation in interpreting results and
determining GW limits, and can provide additional insight into
the properties of the fit procedure. In particular, given a known or
assumed input data covariance matrix Cy, the resulting residual
covariance matrix Cr can be easily calculated:

Cr = E{rrT } = RE{yyT }RT = RCyRT . (6)

The expected cross-covariance between the timing residuals of
a pair of pulsars (a and b) can be calculated similarly:

Cra,rb = E{rarb
T } = RaCya,yb Rb

T . (7)

The procedure presented here for determining post-fit co-
variance and cross-covariance matrices accounts for GW signal
power removed by all terms included in the timing model fit.
In the timing analysis presented in this work, this includes the
time-variable DM terms and interfrequency offsets, as well as
the usual spin, astrometric and binary parameters. In general,
increasing the number of timing fit parameters will reduce the
amplitude of a GW signal in the residuals and hence reduce the
overall GW sensitivity of the experiment.

It is worth noting that the ensemble of post-fit residuals is in
general non-stationary. That is, the elements of the covariance
matrix, Cr,ij , are not simply a function of the time lag τij =
tj − ti , even if the pre-fit stochastic process represented by Cy
does have this property. Therefore, the action of the timing
fit cannot be fully represented as a filter or frequency domain
transfer function, as has sometimes been proposed in the past
(e.g., Blandford et al. 1984; Jenet et al. 2005). This feature of
the statistics of the residuals, along with the irregular sampling,
varying data span and quality, and presence of steep-spectrum
red noise processes, present significant obstacles to a frequency
domain analysis of real-world pulsar timing data. This motivates
our decision to perform the GW analysis in the time domain.

4.2. Single-pulsar Analysis

We can use the methods discussed in the previous section,
along with timing data from a single pulsar, to compute upper
limits on the strength of the GWB. As previously discussed,
there is no definitive way to distinguish GW-induced timing
fluctuations observed in a single pulsar from those due to
intrinsic pulsar spin irregularity or other non-GW effects.
However, in the low-amplitude GW regime, focusing on the
single best pulsar in this manner can provide some of the most
constraining upper limits.

Given a GW spectrum of assumed power-law shape but
unknown amplitude, we compute the pre-fit GW covariance
matrix CGW

y up to an overall scaling by A2
1 (see Equation (3) and

van Haasteren et al. 2009). This is then converted to the residual
covariance matrix CGW

r using Equation (6). Diagonalizing the
weighted covariance matrix WCGW

r W provides an orthonormal
basis of eigenvectors that can be used to decompose the timing
residuals. This basis represents the GW signal using the smallest
possible number of components,28 and is completely orthogonal
to the timing fit. In other words, this basis optimally captures
the portion of the GW signal in the data that is not absorbed
by the timing model fit. Transforming the residuals into this
basis produces a set of projection coefficients ci. The associated
eigenvalues (λi) give the relative level of GW signal power
in each component, and by assuming a nominal value of A1,
can be scaled to produce expected mean-square timing residual
values. Figure 20 shows the measured and expected component
amplitudes for the two best pulsars in our set, PSRs J1713+0747
and J1909−3744, assuming α = −2/3 and A1 = 10−15. In
these plots and the following discussion, the residual coefficients
and eigenvalues have been normalized to represent the rms
residual due to each component. The quadrature sum of all
coefficients for a given pulsar (

∑
c2
i )1/2 reproduces its full rms

residual as presented in Table 2.
It is immediately apparent that the data shown in a plot such

as Figure 20 can be used to place a limit on the strength of a

28 This is very similar to principal components analysis (PCA). The only
difference is that PCA is typically based on an empirical data covariance
matrix rather than an assumed covariance matrix as we have used here.
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Figure 20. Eigenvalue spectra for J1713+0747 (top) and J1909−3744 (bottom). In each plot, the line labeled “Data” shows the absolute value of the residual
coefficients ci when transformed into the optimal basis for an α = −2/3 power-law GW spectrum. The “Exp. GW” line shows the expected amplitude (square root of
the eigenvalues, λ

1/2
i ) for an A1 = 10−15 GW signal level. The fact that the data lines are flat reflects the fact that the residuals are dominated by white noise.

power-law GWB. Roughly speaking, any GW signal present in
the data must lie near or below the observed data values. For
measured component values ci and eigenvalues λi , we combine
several components into a single limit by forming the likelihood
function for the parameters A1 and σ , the level of white noise
present in the data:

log L(A1, σ ) = −1

2

∑
i

{
log 2π (A2

1λi + σ 2) +
c2
i

A2
1λi + σ 2

}
.

(8)
This formulation assumes both the GW signal and the white
noise follow Gaussian statistics; in this case each component
value ci is drawn from a normal distribution with zero mean
and variance equal to A2

1λi + σ 2. The different components
are by construction independent due to the choice of basis.
The product of all the component distributions for a given
pulsar results in the likelihood function of Equation (8). Using
uniform/positive priors on σ and A1, and marginalizing over
σ , we convert the likelihood function above into a posterior
probability distribution for A1, shown in Figure 21. For the
data from J1713+0747, 95% of the distribution falls under
A1 < 1.1 × 10−14 for an α = −2/3 spectrum. This is the
most constraining single pulsar in our set. Similar upper limits
computed for each of the pulsars at a variety of astrophysically
relevant α are listed in Table 3.

While we have framed the discussion so far in terms of
a GWB signal, this analysis method is more fundamentally
a way to quantify timing perturbations of a known/assumed
spectral shape that may exist in the data, regardless of their
cause. In this context we can look at these single-pulsar results
as a test for “red” power-law timing noise in the data set. In

addition to the 95% upper limit on A1 already described, two
other statistics are useful: The maximum likelihood estimate Â1

and the ratio R = L(0, σ̂0)/L(Â1, σ̂ ) between the maximum
likelihood values obtained by either fixing A1 = 0 or allowing
it to vary. Â1 characterizes the strength of the red noise, and
R characterizes its significance in the data. Values of R near
1 indicate consistency with a white-noise-only model, while
very small values of R indicate significant red noise is detected.
These three values are listed for all pulsars for a selection of
various expected GW spectral indices in Table 3. We see that
two of the pulsars—J1643−1224 and J1910+1256—show very
significant red noise (R < 0.01), and two others—J1640+2224
and B1953+29—show mildly significant red noise (0.01 � R <
0.1). The remaining 13 sources are consistent with white noise
only. Additional detailed analyses of the noise in these data
are ongoing, and include both a Bayesian analysis covering
a wider range of power-law spectral index (J. Ellis et al.
2012, in preparation), and an application of the Coles et al.
(2011) methodology to our data set (D. Perrodin et al. 2012, in
preparation).

We will not attempt to definitively determine the cause of
the red noise in the four sources noted here. However, we
speculate that at least for three of them a likely source is the
interstellar medium, rather than processes intrinsic to the pul-
sars. As explained above, J1910+1256 and B1953+29 do not
include DM(t) fits so their timing will be affected at some
level by unmodeled DM variation. J1643−1224 has the sec-
ond highest DM of any pulsar in our set (after B1953+29),
and has a high predicted level of interstellar scatter-broadening,
suggesting that multipath ISM effects may be an issue
here.
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Figure 21. Probability distribution for the GWB amplitude A1 based on J1713+0747 timing, and assuming α = −2/3. 95% of the distribution is contained in
A1 < 1.1 × 10−14 (vertical line), the maximum likelihood value Â1 = 1.9 × 10−15, and the likelihood ratio between this point and A1 = 0 is R = 0.6. In this
case, a non-zero value of A1 provides the best fit to the data, but without much statistical significance over a white-noise-only model. These statistics for all sources,
considering several different values of α, are presented in Table 3.

Table 3
Results from Single-pulsar GW Analyses

Source α = −2/3 α = −1 α = −7/6

log10 R Max-L Â1 95% A1 limit log10 R Max-L Â1 95% A1 limit log10 R Max-L Â1 95% A1 limit
(10−15) (10−15) (10−15) (10−15) (10−15) (10−15)

J0030+0451 0.00 0.0 76.5 0.00 0.0 47.8 0.00 0.0 37.8
J0613–0200 0.00 0.0 100.9 0.00 0.0 63.1 0.00 0.0 49.9
J1012+5307 0.00 0.0 153.8 0.00 0.0 109.7 0.00 0.0 93.5
J1455–3330 0.00 0.0 242.8 0.00 0.0 162.6 0.00 0.0 133.1
J1600–3053 −0.00 58.9 973.9 −0.01 62.6 1173.6 −0.03 68.1 1240.4
J1640+2224 −1.31 68.1 501.6 −1.84 40.3 413.3 −1.90 28.1 350.2
J1643–1224 −4.57 182.9 455.3 −4.57 122.5 333.6 −4.70 99.5 284.6
J1713+0747 −0.22 1.9 11.3 −0.22 1.1 7.6 −0.29 0.8 6.2
J1744–1134 0.00 0.0 184.1 0.00 0.0 119.1 0.00 0.0 96.2
J1853+1308 −0.45 23.6 131.2 −0.36 8.3 86.7 −0.35 5.3 70.0
B1855+09 −0.31 14.0 70.0 −0.59 8.6 45.6 −0.65 6.4 36.3
J1909–3744 0.00 0.0 39.4 0.00 0.0 26.8 −0.00 1.0 25.0
J1910+1256 −4.66 41.7 229.7 −4.91 23.6 144.6 −4.85 17.4 115.1
J1918–0642 −0.31 64.8 545.0 −0.21 38.9 383.1 −0.11 10.5 282.6
B1953+29 −2.11 274.9 1877.7 −1.43 188.0 1249.0 −1.52 160.4 1110.5
J2145–0750 0.00 0.0 568.0 0.00 0.0 372.6 0.00 0.0 296.6
J2317+1439 −0.20 43.4 383.1 −0.13 26.4 195.9 −0.07 20.9 148.6

B1855+09 (KTR94) −0.27 5.6 31.3 −0.15 1.8 19.3 −0.12 1.1 15.2
B1855+09 (combined) −8.53 5.0 13.1 −7.09 1.2 6.5 −7.41 0.7 4.8

4.3. Verification

The methods discussed in the previous section do not rely
at all on simulated data to produce a GW upper limit or red
noise estimate. However, it is still a valuable exercise to analyze
a simulated GW signal using this approach, as a test of its
validity. To do so, we added simulated GW to our timing data
for J1713+0747, using the TEMPO2 GWbkgrd plugin (Hobbs
et al. 2009). GW were added using α = −2/3 and A1 = 10−14.
These data were then analyzed using the eigenvalue procedure

described above. Figure 22 shows the rms component values
(ci) from 1000 GW realizations, along with the square root
of the associated eigenvalues (λ1/2

i ) scaled to the known GW
signal level. The excellent agreement between these two lines
shows that our algorithm is correctly predicting the amount of
GW power present in the timing residuals. Figure 23 presents
results of computing maximum likelihood and 95% upper limit
amplitude values from the simulated data. These statistics agree
well with the known amount of GW signal in the simulated data
(gray region in the plots).
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Figure 22. Eigenvalue spectra for J1713+0747 with simulated GW injected at an amplitude of A1 = 10−14. As in Figure 20, the “Exp. GW” line shows the expected
GW amplitude determined from the eigenvalue analysis, scaled to the known signal level. The “Data” line shows the root-mean-square residual in each component,
averaged over 1000 realizations of the simulation. The correct GW signal level is observed in the data, until the level drops below the white noise near component 7.
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Figure 23. Histograms of maximum likelihood GW amplitude (upper panel), and 95% upper limit (lower panel) computed from 1000 realizations of a simulated
A1 = 10−14, α = −2/3 GWB added to J1713+0747 timing data. The shaded range represents the true GW signal level, including both the simulated signal and any
existing GW signal in the data, up to the limit presented in Section 4.2. The vertical line in the lower panel shows the 5% quantile of the histogram values.
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As an additional test of this method, we analyzed the publicly
available seven-year B1855+09 timing data set published by
Kaspi et al. (1994, hereafter KTR94), from observations taken
during 1986–1992. This data set has been used for several
previous GW analyses, so provides a useful benchmark for
testing different analysis methods. For this comparison we focus
on the GW spectrum originally considered by KTR94, with
α = −1. From the KTR94 data set alone we find no significant
evidence for red timing noise (see results in Table 3), and using
our method it sets a 95% upper limit of A1 < 1.9 × 10−14.
This is somewhat more conservative than the published limits
of A1 < 1.3 × 10−14 (KTR94) and A1 < 1.4 × 10−14 (Jenet
et al. 2006) obtained from the same data.29 This difference may
be due to the varying strategies used by these three analyses to
account for effects of the timing model fit and the possibility of
existing red noise in the data.

Combining the KTR94 data with our newer observations
of this pulsar into a single analysis produces a limit A1 <
6.5 × 10−15, comparable to what we get from our J1713+0747
data alone. However, very significant red noise is detected in
the combined B1855+09 data set (Table 3). A fundamental
feature of red noise processes is that their amplitude grows with
increasing data span. Therefore, this detection in the combined
data set is not inconsistent with the lack of such a detection in
either of the two data subsets on their own. Another contributing
factor may be unmodeled variation in DM. The KTR94 data
were obtained at a single frequency and as such cannot be
corrected for DM variation. In our newer data, a significant
DM(t) trend is clearly visible for this pulsar (Figure 13).

4.4. Cross-correlation Analysis

To detect a GW signal present in the timing data, we must
consider correlations among the timing residuals of different
pulsars, as previously discussed. This is complicated by the
fact that residuals from each pulsar are produced by separate
timing model fits. The fits potentially incorporate a wide variety
of effects (e.g., binary parameters) that vary from pulsar to
pulsar. Furthermore the span and cadence of observations is not
necessarily identical between all the sources, and each may be
affected by a different level of red timing noise from either GW
or other sources. Correctly measuring the correlation between
two such residual timeseries is therefore more complicated than
simply multiplying and averaging the two signals, as would be
done in a standard correlation analysis.

Referring to the discussion in Section 4.1 and in particular
Equation (7), given the actual timing model fits used for any
two pulsars and an expected gravitational wave spectrum, we
determine the expected cross-correlation for the GW signal
between all pairs of residuals of each pulsar pair (CGW

ra,rb
). We

use the elements of this matrix, along with the estimated noise
parameters from Section 4.2 as weights for a cross-correlation
sum to estimate the GW signal power correlated between pulsars
a and b:

ρab =
∑

ijkl r
(a)
i (C tot(a))−1

ij C
GW(a,b)
jk (C tot(b))−1

kl r
(b)
l∑

ijkl(C
tot(a))−1

ij C
GW(a,b)
jk (C tot(b))−1

kl C
GW(a,b)
il

. (9)

The components of this expression are as follows:

1. The sum indices i and j run from 1 to Na, the number of
TOAs for pulsar a. Similarly, k and l run from 1 to Nb.

29 Limits originally published in units of Ωgwh2 were converted to equivalent
A1 using Equation (3) of Jenet et al. (2006).

2. r
(a)
i and r

(b)
l are simply the post-fit timing residuals for

pulsars a and b, respectively.
3. C

tot(a)
ij and C

tot(b)
kl are the total post-fit covariance matrices

for each pulsar. These are determined using the maximum
likelihood red noise parameters found in the earlier single-
pulsar analysis, combined with the TOA measurement
uncertainties, and modified by the timing model fit (see
Equation (6)):

Ctot
r = R

(
Â1

2
CGW

y + W−2
)
RT . (10)

4. C
GW(a,b)
jk are the elements of CGW

ra,rb
, the expected post-fit

cross-covariance matrix for the GW signal in pulsars a and
b, computed using Equation (7) and the assumed power-law
spectral shape.

The presence of the inverse covariance matrices in
Equation (9) effectively serves to “whiten” the timing resid-
uals before computing the cross-correlation sum. This reduces
the weight of data from pulsars that have red noise compo-
nents, potentially including any “self-noise” contribution from
the stochastic GWB itself. This formulation is conceptually very
similar to the frequency-domain optimal statistic presented by
Anholm et al. (2009).

The post-fit covariance matrices Ctot
r are singular, due to the

degrees of freedom removed by the timing fit, or equivalently by
the application of the R operator. Therefore, the matrix inverse
technically does not exist. In this situation it is appropriate to
use a singular value decomposition-based pseudoinverse in its
place. This is equivalent to performing the correlation in the
subspace of signals that are orthogonal to (i.e., not absorbed by)
the timing fit. The uncertainty on ρab is given by

σρab
=

⎛
⎝∑

ijkl

(
C tot(a)

)−1

ij
C

GW(a,b)
jk

(
C tot(b)

)−1

kl
C

GW(a,b)
il

⎞
⎠

−1/2

.

(11)
The resulting ρab for all 136 pulsar pairs, with α = −2/3, is

shown in Figure 24. We search for the presence of the GWB in
these data by fitting them to an amplitude (proportional to A2

1)
times the Hellings–Downs angular function ζ (θab). The best fit,
also shown in Figure 24, results in A2

1 = (−10 ± 26) × 10−30

for α = −2/3. This is consistent with no detectable GWB in
the data, and also can be interpreted as a 2σ upper limit of
A1 < 7.2×10−15, an improvement over the single-pulsar limits
presented in Section 4.2. The reduced-χ2 of this fit is 0.95,
providing additional confidence that the uncertainty estimate of
Equation (11) is correct.

A table of the top 15 correlation measurements, sorted by
increasing uncertainty, is presented in Table 4. It is clear that
the measurement is dominated by pairs involving one or both
of the two best-timing pulsars in the set, J1713+0747 and
J1909−3744. In total, 8 separate pulsars contribute to these
15 lowest-uncertainty points. The limit being set primarily by a
small number of pulsars is due to the fact that our current data set
is in a white noise dominated, low GW amplitude regime. As the
length and quality of such data sets increase, they are expected
to become increasingly dominated by red noise components,
either from the GWB itself or from intrinsic pulsar timing
noise. In the red noise dominated and/or strong GW regime, a
large number of pulsars (likely ∼20–50) is required to improve
the significance of a GW detection (Jenet et al. 2005; Cordes
& Shannon 2012). This provides motivation for continuing to
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Figure 24. Measured cross-correlated power ρab as a function of separation angle θab for pairs of pulsars in our set, with error bars showing 1σ uncertainty. Power is
normalized relative to an A2

1 = 10−30, α = −2/3 GWB. The lines show the ±2 σ fit to the amplitude of the Hellings–Downs function ζ (θ ). All 136 cross-correlation
points were used for the fit, however for clarity the 15 lowest-uncertainty values are denoted with solid/bold symbols.

Table 4
Cross-correlated Power Measurements and GW Results

Pulsar a Pulsar b Angle θab α = −2/3 α = −1 α = −7/6

Cross-power Uncertainty Cross-power Uncertainty Cross-power Uncertainty
(deg) ρab (10−30) σρab

(10−30) ρab (10−30) σρab
(10−30) ρab (10−30) σρab

(10−30)

J1713+0747 J1909−3744 53.0 −28.4 13.2 −8.8 4.4 −5.9 2.7
J1713+0747 J1744−1134 20.8 −13.1 23.4 −3.5 7.7 −1.6 4.0
J0613−0200 J1713+0747 164.0 24.0 33.4 7.1 11.0 3.8 5.9
J1012+5307 J1713+0747 92.8 4.8 35.0 1.1 11.2 0.6 6.0
J1744−1134 J1909−3744 32.4 8.3 40.7 −0.6 12.6 0.4 8.0
J0030+0451 J1713+0747 108.2 21.2 41.0 6.7 12.6 3.8 6.5
J1713+0747 B1855+09 25.7 −44.0 49.5 −11.5 17.9 −5.5 9.9
J0613−0200 J1909−3744 138.2 −40.9 59.4 −13.0 18.3 −7.8 11.7
J1012+5307 J1909−3744 145.2 −9.9 62.6 −4.8 18.7 −3.1 11.9
J0030+0451 J1909−3744 85.3 −44.4 75.0 −14.4 21.2 −8.3 13.0
J1713+0747 J1853+1308 25.2 −71.8 82.1 −18.7 19.5 −9.8 9.6
B1855+09 J1909−3744 47.5 110.2 97.3 37.1 33.1 20.0 21.2
J0613−0200 J1744−1134 164.6 31.6 103.2 9.3 31.3 5.2 16.8
J1012+5307 J1744−1134 113.0 77.4 108.6 21.7 32.2 11.5 17.1
J0030+0451 J1744−1134 102.2 39.9 140.0 11.6 38.2 6.4 19.4

· · · · · · · · · · · · · · ·
Best-fit A2

1 (10−30) −10 ± 26 −3.7 ± 8.4 −1.9 ± 4.6

observe many MSPs, even if upper limits are currently only
dominated by a small subset of the pulsars.

Table 4 also lists the best-fit A2
1 and its uncertainty for three

different spectral indices. The resulting 2σ upper limits are
A1 = 7.2 × 10−15, 4.1 × 10−15, and 3.0 × 10−15 for α = −2/3,
−1, and −7/6, respectively. The change in value of A1 with α is
primarily due to the fact that although we are using 1 year−1 as
the reference GW frequency, the measurement is most sensitive
to frequencies near T −1, where T ∼ 5 years is the effective

length of the multi-pulsar data set. Therefore, we expect the
various limits on A1 to scale with α as follows:

A1(α) = AT

(
T

1 year

)α

. (12)

Using our three measured A1 limits to empirically determine
AT and T gives AT = 2.26 × 10−14 and T = 5.54 years (see
Figure 25). These values can be used together with Equation (12)
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Figure 25. Measured 2σ upper limits on A1 as a function of GW spectral index α (squares). The values are consistent with a simple scaling based on AT = 2.26×10−14

at T = 5.54 years and Equation (12) (line). This relationship can be used to convert these results to equivalent limits for other values of α.

to convert our measurement into an approximate limit on A1 for
values of α that we have not considered here.

5. DISCUSSION

5.1. Supermassive Black Holes

As previously mentioned, the strongest expected source of
GW in the nanohertz band is the ensemble background from
SMBHs, expected to have a spectral index of α = −2/3.
It is on these which we will focus our discussion here. The
GWB predicted from the SMBH binary population is dependent
on a number of observationally ill-constrained values: e.g.,
the ubiquity of SMBHs in galaxy centers, the prevalence of
merging, as well as the timescale and dominant mode (growth
via accretion or merger with other black holes) of black hole
growth. We thus rely on various parameterizations of black hole
demographics through which to interpret our background limit.

Importantly, we first endeavor to explicitly rederive the
standard parameterization of the predicted characteristic strain
spectrum, hc(f ), from the cosmological population of binary
SMBHs. The literature demonstrates inconsistencies for this
parameterization; in particular, we wish to point out that despite
performing an apparently equivalent derivation, Equation (32)
of Jaffe & Backer (2003) and Equation (8) of Jenet et al. (2006)
differ. In addition, the limits placed by Jenet et al. (2006) on the
parameter I, defined below, are inconsistent with their reported
limit on the characteristic strain.

We begin with the strain amplitude of an SMBH binary system
(Peters & Mathews 1963):

hs = 4

√
2

5

(GMc)5/3

c4D
f 2/3(1 + z)2/3π2/3, (13)

where f is the GW frequency in the observer’s rest frame, D is
the distance to the SMBH binary, z is the system’s cosmological
redshift, and Mc = [m1m2(m1 + m2)−1/3]3/5 is the binary chirp
mass. The amount of time dτ spent per GW spectral bin df is

given by (Peters & Mathews 1963):

dτ

df
= 5

96

(
c3

GMc

)5/3

π−8/3f −11/3(1 + z)−5/3. (14)

In the proper rest frame of any comoving point in space, the
number density of SMBHs merging per unit time (tp) per unit
first SMBH mass (m1) per unit BH mass of its companion (m2)
is written as

Q(m1,m2, tp, x) = dN

dtpd3xdm1dm2
, (15)

where d3x represents a unit of comoving volume. We then
wish to determine the number of merging events per unit time t
observed in the observer rest frame (i.e., z = 0) per unit z per
unit m1,m2. Taking cosmological considerations into account,
this is given by (e.g., Jaffe & Backer 2003):

ν(m1,m2, t, z) = 4π
c

H0

D2

E(z)

Q

1 + z
, (16)

where H0 is the Hubble constant, and E(z) =
√

ΩΛ + Ωm(1 + z)3.
We set ΩΛ = 0.7 and Ωm = 0.3 to represent a standard flat uni-
verse.

Given hs, dτ/df , and ν(m1,m2, t, z), we can construct the
expected strain per unit f induced by all binary black holes in
the universe, giving the characteristic strain spectrum:

hc(f )2 =
∫

f h2
s

dτ

df
ν(m1,m2, z)dm1dm2dz

= 4

3π1/3c2

G5/3

H0f 4/3

∫
Q

M
5/3
c

(1 + z)4/3E(z)
dm1dm2dz.

(17)

We then assume that Q can be written as

Q = φ(m1,m2)R(tp, x), (18)
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where φ(m1,m2) is the mass function of SMBHs, and R(tp, x)
is the total number of coalescing binary systems per unit time
in the binary rest frame. Note that we explicitly assume in
Equation (18) that φ is not redshift-dependent. We then regroup
these terms to state:

〈
M5/3

c

〉 =
∫

φ(m1,m2)M5/3
c dm1dm2 (19)

I =
∫

R(tp, x)

R0

1

(1 + z)4/3E(z)
dz, (20)

where R0 is R(tp, x) evaluated at the location of Earth at the
current epoch in time. Using the above definitions, we arrive at
the final form of our characteristic strain spectrum:

hc(f )2 = 4

3π1/3c2

G5/3

H0f 4/3

〈
M5/3

c

〉
R0I. (21)

We adopt the following values:

c = 2.998 × 108 m s−1 (22)

G = 6.673 × 10−11 m3 kg−1 s−2 (23)

f = 1 year−1 = 3.170 × 10−8 Hz (24)

H0 = h · 100 km s−1 Mpc−1 (25)

= h · 3.24078 × 10−18 Hz, (26)

which yields

hc,1 = 7.37 × 10−17

√
h

〈(
Mc

107 M�

)5/3
〉1/2

×
(

R0

10−4 Gyr−1 Mpc−3

)1/2

I 1/2. (27)

Parameterized in this way, the unknowns in the predicted
amplitude of the strain spectrum are the Hubble constant,
the average chirp mass, the local rate of coalescing binary
systems, and the factor I as it is defined in Equation (20). This
factor encompasses various redshift-evolving values, and can be
broken down into more physical direct parameters, depending
on the input parameterization being considered. Note that below,
we set h = 1.

5.1.1. Implications of our Strain Amplitude Limit

As implied above, a limit from pulsar timing on hc(f ) can
bound a number of parameters of astrophysical significance.
However, given the sizable unknowns in these parameters, the
precise implications of our A1 limit will depend on the model
being considered. The parameterization of Jaffe & Backer
(2003) provided an estimate of 〈M5/3

c 〉 = (2.3 × 107 M�)5/3,
extrapolating this value from the locally observed relationship
between spheroid mass and black hole mass (Merritt & Ferrarese
2001) and various theoretical predictions for the spheroid mass
function. They also employ R0 = 9 × 10−5 Gyr−1 Mpc−3. We
thus place a limit of I � 2646 using these values. Jaffe &
Backer (2003) parameterize the redshift dependence of merger
rate evolution as I ∝ R(z) ∝ (1 + z)γ , where γ is expected to
range between −0.4 to 2.3. Using this parameterization and
the cosmological parameters noted above, we constrain the
redshift dependence of R(z) to γ � 7. Thus, we do not yet
place physically interesting constraints on this value.

Most recently, Sesana et al. (2008) considered a broad
range of probable parameter uncertainty values applied to four
leading scenarios for black hole growth in the context of
hierarchical merging. Of most importance here, they found that
when accounting for uncertainties in all model parameters, the
estimated range of predicted A1 values produced a relatively
narrow predicted amplitude range of 1 × 10−16 � A1 �
3 × 10−15. While we are not yet sensitive enough to impact the
upper boundary of their predicted range, it is pertinent to note
that our current sensitivity is approximately a factor of two away
from the expected highest prediction. If adequate GW sensitivity
can be achieved, pulsar timing will probe quantities not readily
accessible by electromagnetic observations. Following from the
above discussion, the largest uncertainties noted by Sesana et al.
(2008) were the SMBH mass function (which, if constrained,
leads to limits on galactic host/black hole mass relationships,
particularly in the most massive regime) and the local merger
rate of massive galaxies. They also considered the amount of
merger-induced accretion onto black holes and the post-merger
black hole inspiral rate, finding these to be likewise poorly
constrained.

The other pertinent finding of Sesana et al. (2008) was that
with a paucity depending on the input model, GW spectral bins
above ∼1–5 × 10−8 Hz were populated by increasingly few
black holes–at the highest frequencies, sometimes one or none.
A lack of black holes contributing to the high-frequency GW
spectrum could affect us in two ways. First, it could change
the observed GWB spectral slope; in fact, Sesana et al. used an
expanded version of our Equation (1) to include a break in the
spectrum. Alternatively, it could induce non-stochastic signals,
requiring a directional/point-source analysis approach to detect
the emitted signal. Either of these consequences would corrupt
the sensitivity and applicability of the analysis performed here,
particularly if the analysis were performed on data spans of
<3 years. All but one of the pulsar data sets presented here
exceed this length, thus the influence of this issue is expected
to be minimal. As the contributing population is expected to
increase at lower frequencies, the impact of this problem will
decrease as further data are collected on these pulsars, and as we
reach the aforementioned sensitivity improvements that come
with increased data span. Nonetheless, further studies must be
performed to address the effects of the N-source contribution
issue, particularly to understand its effect on the expected
Hellings–Downs function.

5.2. Cosmic Strings

Cosmic strings or superstrings are linear-dimensional struc-
tures proposed to arise due to phase transitions in the early
universe. Networks of cosmic strings can generate powerful
bursts of GW radiation through the production of cusps on long
strings and loops, leading to a stochastic GWB with α 
 −7/6
in the nanohertz frequency band (e.g., Damour & Vilenkin 2005;
Siemens et al. 2007). The amount of GW produced depends on
physical parameters such as the string loop size scale, the recon-
nection probability and the string tension. Conversely, measured
GW limits constrain the possible values of these parameters.
Following the analysis of Siemens et al. (2007), our results for
cosmic strings take the form of sections of cosmic string param-
eter space that are ruled out or allowed by our upper limit on the
gravitational wave background.

In the case where cosmic string loop sizes are set by gravi-
tational back reaction (“small loop” case) we explore the three-
dimensional parameter space of cosmic string dimensionless
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Figure 26. Cosmic string parameter space constraints from our measurement,
in the small loop case. The shaded areas shown regions of string tension (Gμ)
and loop size (ε) that are ruled out by our measurement for various values of
reconnection probability (p).

tension Gμ, reconnection probability p, and loop sizes param-
eterized by ε (for details, see Siemens et al. 2007). The shaded
areas of Figure 26 show the regions of the ε-Gμ plane ruled
out for four values of the reconnection probability p = 1, 10−1,
10−2, and 10−3. For example, for ε = 1, and p = 10−3 the
string tension Gμ is constrained to be less than about 2×10−11.

If the size of cosmic string loops is instead given by the
large-scale dynamics of the network, as suggested by recent
numerical simulations (Blanco-Pillado et al. 2011), we fix the
cosmic string loop length and explore the two-dimensional
parameter space of reconnection probability and string tension
following Siemens et al. (2007). These results are shown
in Figure 27. The stochastic background produced in these
models is substantially larger and therefore our constraints
on parameters are correspondingly tighter. For example for
a reconnection probability p = 1, Gμ < 10−9, and for a
reconnection probability of p = 10−3 all cosmic string tensions
above 10−12 are ruled out.

5.3. Future Performance

Predicting the future sensitivity of a PTA project to GW
depends on a large number of poorly constrained factors.
These include the level of pulsar-intrinsic timing noise in
the MSP population (Shannon & Cordes 2010), the statistical
characteristics of the pulsar radio emission (Osłowski et al.
2011), and the influence of the interstellar medium on pulsar
timing (Coles et al. 2010). A detailed assessment of the
effect of various kinds of noise on GW detection sensitivity
was done by Cordes & Shannon (2012). Assuming that all
factors besides experiment duration T (e.g., number of pulsars,
observing cadence, telescope instrumentation, etc.) remain the
same, we can roughly bound our future GW limits by two
cases:

1. Most optimistically, the data could remain dominated
primarily by “white” radiometer noise. In this case, limits
on A1 scale in proportion to T α−3/2. For example, A1 ∝
T −13/6 for the SMBH GWB. With an additional five years
of data, we will reach A1 ∼ 1.6 × 10−15 for this spectrum,
well into the range of expected GW amplitudes.

Figure 27. Cosmic string constraints in the large loop case, in terms of string
tension Gμ and reconnection probability p. The shaded area is ruled out by our
GW upper limit.

2. On the other hand, if the data are completely dominated by
timing noise with spectral index equal to or steeper than
the GW signal, limits improve only as T −1/2. Doubling the
data span would only improve the result to A1 ∼ 5×10−15.
Note that this does not appear to be the situation currently
for the majority of our pulsars.

Intermediate cases, which are more likely to apply in reality
than either of the two extremes above, include those where
only some of the pulsars are timing-noise dominated, or have
timing noise that is less red than the GW signal. Note that these
scalings only apply for GW limits (that is, non-detections)—in
the GW signal-dominated regime, and during the transition from
limit to detection, different rules apply (see Cordes & Shannon
2012). These estimates also do not take into account any future
improvements in the experiment. In reality both telescopes
have recently undergone a major upgrade in digital pulsar
instrumentation with the installation of the GUPPI and PUPPI
pulsar backends (P. B. Demorest et al. 2012, in preparation).
These provide an order of magnitude more radio bandwidth
than was used for this analysis. NANOGrav is also currently
in the process of expanding the number of pulsars monitored
to ∼30, as new MSPs are discovered by searches including
Fermi gamma-ray source follow-up (e.g., Ransom et al. 2011),
the Arecibo PALFA survey (Lazarus et al. 2012), and the
Green Bank North Celestial Cap survey (K. Stovall et al.
2012, in preparation). Additional improvements may come from
connecting our current data set to historical pulsar timing data
stretching back as far as 20 years for some sources.

6. CONCLUSIONS

In this paper, we presented and analyzed five years of radio
timing data on 17 pulsars taken with the two largest single-
dish telescopes in the world. Our timing analysis included novel
methods for dealing with time-variable dispersion measure and
intrinsic profile shape evolution with frequency. We achieved
sub-microsecond rms timing results on all but two of our
sources, and rms residuals of only ∼30–50 ns in the two best
cases. We presented a new time-domain method for detecting
and/or limiting timing fluctuations of a known spectral shape
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but unknown amplitude. The key feature of this analysis was
proper accounting for the signal power removed by the timing
model fit, without requiring dependence on simulation for this
step. Applied to our timing of J1713+0747, these methods
set a single-pulsar limit on the stochastic gravitational wave
background amplitude of A1 < 1.1 × 10−14 (95%) for the
expected SMBH GWB spectrum with spectral index α = −2/3.
We discussed how to measure cross-correlations between the
timing of pairs of pulsars while also accounting for both the
timing model fit and the presence of correlated (non-white) noise
in the data. For α = −2/3, the measured cross-correlations in
our data set constrain A2

1 to (−10 ± 26) × 10−30, or alternately
a 2σ upper limit of A1 < 7.2 × 10−15. We discussed how our
measurement will improve with time, and suggest that prospects
are good for obtaining astrophysically constraining GW limits,
or possibly even a detection, over the next five years.
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