1,455 research outputs found

    Evaluation of positive G sub Z tolerance following simulated weightlessness (bedrest)

    Get PDF
    The magnitude of physiologic changes which are known to occur in human subjects exposed to varying levels of + G sub Z acceleration following bed rest simulation of weightlessness was studied. Bed rest effects were documented by fluid and electrolyte balance studies, maximal exercise capability, 70 deg passive tilt and lower body negative pressure tests and the ability to endure randomly prescribed acceleration profiles of +2G sub Z, +3G sub Z, and +4G sub Z. Six healthy male volunteers were studied during two weeks of bed rest after adequate control observations, followed by two weeks of recovery, followed by a second two-week period of bed rest at which time an Air Force cutaway anti-G suit was used to determine its effectiveness as a countermeasure for observed cardiovascular changes during acceleration. Results showed uniform and significant changes in all measured parameters as a consequence of bed rest including a reduced ability to tolerate +G sub Z acceleration. The use of anti-G suits significantly improved subject tolerance to all G exposures and returned measured parameters such as heart rate and blood pressure towards or to pre-bed-rest (control) values in four of the six cases

    Increased Recombination Between Active tRNA Genes

    Full text link
    Transfer RNA genes are distributed throughout eukaryotic genomes, and are frequently found as multicopy families. In Saccharomyces cerevisiae, tRNA gene transcription by RNA polymerase III suppresses nearby transcription by RNA polymerase II, partially because the tRNA genes are clustered near the nucleolus. We have tested whether active transcription of tRNA genes might also suppress recombination, since recombination between identical copies of the repetitive tRNA genes could delete intervening genes and be detrimental to survival. The opposite proved to be the case. Recombination between active tRNA genes was elevated, but only when both genes are transcribed. We also tested the effects of tRNA genes on recombination between the direct terminal repeats of a neighboring retrotransposon, since most Ty retrotransposons reside next to tRNA genes, and the selective advantage of this arrangement is not known.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63113/1/dna.2006.25.359.pd

    Online versus Face-to-Face Public Speaking Outcomes: A Comprehensive Assessment

    Get PDF
    In an attempt to meet rising student demand and cost-effectively deliver instruction, colleges and universities are offering more online courses. Despite the increasing growth of the online format, there remains a question of the effectiveness of this instructional delivery method. We evaluated the relative effectiveness of a public speaking course in both the online and the traditional face-to-face formats at a large, public university in the mid-Atlantic region. A series of MANOVAs were run to test the differences in performance and other student growth indicators between course formats. While the students in the online courses demonstrated higher behavioral engagement, the majority of indicators were similar across formats. The technology might explain the observed differences in online courses, which permits students to correct mistakes and re-record a presentation before submitting it, or the larger withdrawal rate which may selectively remove those students who may have done poorly in either format. Implications for future research and practice are presented

    Ventilation heterogeneity in obesity.

    Get PDF
    Obesity is associated with important decrements in lung volumes. Despite this, ventilation remains normally or near normally distributed at least for moderate decrements in functional residual capacity (FRC). We tested the hypothesis that this is because maximum flow increases presumably as a result of an increased lung elastic recoil. Forced expiratory flows corrected for thoracic gas compression volume, lung volumes, and forced oscillation technique at 5-11-19 Hz were measured in 133 healthy subjects with a body mass index (BMI) ranging from 18 to 50 kg/m(2). Short-term temporal variability of ventilation heterogeneity was estimated from the interquartile range of the frequency distribution of the difference in inspiratory resistance between 5 and 19 Hz (R5-19_IQR). FRC \% predicted negatively correlated with BMI (r = -0.72, P < 0.001) and with an increase in slope of either maximal (r = -0.34, P < 0.01) or partial flow-volume curves (r = -0.30, P < 0.01). Together with a slight decrease in residual volume, this suggests an increased lung elastic recoil. Regression analysis of R5-19_IQR against FRC \% predicted and expiratory reserve volume (ERV) yielded significantly higher correlation coefficients by nonlinear than linear fitting models (r(2) = 0.40 vs. 0.30 for FRC \% predicted and r(2) = 0.28 vs. 0.19 for ERV). In conclusion, temporal variability of ventilation heterogeneities increases in obesity only when FRC falls approximately below 65\% of predicted or ERV below 0.6 liters. Above these thresholds distribution is quite well preserved presumably as a result of an increase in lung recoil

    Dolomite study for in situ CO2 capture for chemical looping reforming

    Get PDF
    The non-isothermal kinetic and thermal behaviour of a naturally formed dolomite in conditions that approach in situ CO2 capture in chemical looping reforming, were investigated. The performance of this dolomite was studied at micro-scale in 'dry' conditions, as well as at macro-scale in 'dry' and 'wet' conditions to investigate the effects of scale (3 mg, 2.5 g), partial pressures of CO2 (<15 kPa) and steam, and deactivation upon limited cycling. The carbonation and calcination kinetics were modelled using an improved iterative Coats-Redfern method. Increasing CO2 partial pressures on the 'dry' macro-scale exacerbated the experimental carbonation conversions in an inversely proportional trend when compared with those at micro-scale. The presence of steam had a positive effect on CO2 chemisorption. Steam had a negligible influence on the calcination activation energies. The activation energies of carbonation were increased for the experiments at the highest CO2 partial pressures under wet conditions

    Pomelo II: finding differentially expressed genes

    Get PDF
    Pomelo II (http://pomelo2.bioinfo.cnio.es) is an open-source, web-based, freely available tool for the analysis of gene (and protein) expression and tissue array data. Pomelo II implements: permutation-based tests for class comparisons (t-test, ANOVA) and regression; survival analysis using Cox model; contingency table analysis with Fisher's exact test; linear models (of which t-test and ANOVA are especial cases) that allow additional covariates for complex experimental designs and use empirical Bayes moderated statistics. Permutation-based and Cox model analysis use parallel computing, which permits taking advantage of multicore CPUs and computing clusters. Access to, and further analysis of, additional biological information and annotations (PubMed references, Gene Ontology terms, KEGG and Reactome pathways) are available either for individual genes (from clickable links in tables and figures) or sets of genes. The source code is available, allowing for extending and reusing the software. A comprehensive test suite is also available, and covers both the user interface and the numerical results. The possibility of including additional covariates, parallelization of computation, open-source availability of the code and comprehensive testing suite make Pomelo II a unique tool

    Aero-Heating of Shallow Cavities in Hypersonic Freestream Flow

    Get PDF
    The purpose of these experiments and analysis was to augment the heating database and tools used for assessment of impact-induced shallow-cavity damage to the thermal protection system of the Space Shuttle Orbiter. The effect of length and depth on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These rapid-response experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated immediately prior to the launch of STS-114, the initial flight in the Space Shuttle Return-To-Flight Program, and continued during the first week of the mission. Previously-designed and numerically-characterized blunted-nose baseline flat plates were used as the test surfaces. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process and the two-dimensional flow assumptions used for the data analysis. The experimental boundary layer state conditions were inferred using the measured heating distributions on a no-cavity test article. Two test plates were developed, each containing 4 equally-spaced spanwise-distributed cavities. The first test plate contained cavities with a constant length-to-depth ratio of 8 with design point depth-to-boundary-layer-thickness ratios of 0.1, 0.2, 0.35, and 0.5. The second test plate contained cavities with a constant design point depth-to-boundary-layer-thickness ratio of 0.35 with length-to-depth ratios of 8, 12, 16, and 20. Cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary results indicate that the floor-averaged Bump Factor (local heating rate nondimensionalized by upstream reference) at the tested conditions is approximately 0.3 with a standard deviation of 0.04 for laminar-in/laminar-out conditions when the cavity length-to-boundary-layer thickness is between 2.5 and 10 and for cavities in the depth-to-boundary-layer-thickness range of 0.3 to 0.8. Over this same range of conditions and parameters, preliminary results also indicate that the maximum Bump Factor on the cavity centerline falls between 2.0 and 2.75, as long as the cavity-exit conditions remain laminar. Cavities with length-to-boundary-layer-thickness ratio less than 2.5 can not be easily classified with this approach and require further analysis

    Using the Community Readiness Model to Select Communities for a Community-Wide Obesity Prevention Intervention

    Get PDF
    To build on a growing interest in community-based obesity prevention programs, methods are needed for matching intervention strategies to local needs and assets. We used the Community Readiness Model (CRM), a structured interview guide and scoring system, to assess community readiness to act on childhood obesity prevention, furthering a replication study of a successful intervention

    Branch Mode Selection during Early Lung Development

    Get PDF
    Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio
    • …
    corecore