12 research outputs found

    Variability and spectral modeling of the hard X-ray emission of GX 339-4 in a bright low/hard state

    Full text link
    We study the high-energy emission of the Galactic black hole candidate GX 339-4 using INTEGRAL/SPI and simultaneous RXTE/PCA data. By the end of January 2007, when it reached its peak luminosity in hard X-rays, the source was in a bright hard state. The SPI data from this period show a good signal to noise ratio, allowing a detailed study of the spectral energy distribution up to several hundred keV. As a main result, we report on the detection of a variable hard spectral feature (>150 keV) which represents a significant excess with respect to the cutoff power law shape of the spectrum. The SPI data suggest that the intensity of this feature is positively correlated with the 25 - 50 keV luminosity of the source and the associated variability time scale is shorter than 7 hours. The simultaneous PCA data, however, show no significant change in the spectral shape, indicating that the source is not undergoing a canonical state transition. We analyzed the broad band spectra in the lights of several physical models, assuming different heating mechanisms and properties of the Comptonizing plasma. For the first time, we performed quantitative model fitting with the new versatile Comptonization code BELM, accounting self-consistently for the presence of a magnetic field. We show that a magnetized medium subject to pure non-thermal electron acceleration provides a framework for a physically consistent interpretation of the observed 4 - 500 keV emission. Moreover, we find that the spectral variability might be triggered by the variations of only one physical parameter, namely the magnetic field strength. Therefore, it appears that the magnetic field is likely to be a key parameter in the production of the Comptonized hard X-ray emission.Comment: 14 pages, 9 figures, 3 tables, uses emulateApj.cls, accepted for publication in Ap

    GRS 1915+105 : High-energy Insights with SPI/INTEGRAL

    Full text link
    We report on results of two years of INTEGRAL/SPI monitoring of the Galactic microquasar GRS 1915+105. From September 2004 to May 2006, the source has been observed twenty times with long (approx 100 ks) exposures. We present an analysis of the SPI data and focus on the description of the high-energy (> 20 keV) output of the source. We found that the 20 - 500 keV spectral emission of GRS 1915+105 was bound between two states. It seems that these high-energy states are not correlated with the temporal behavior of the source, suggesting that there is no direct link between the macroscopic characteristics of the coronal plasma and the the variability of the accretion flow. All spectra are well fitted by a thermal comptonization component plus an extra high-energy powerlaw. This confirms the presence of thermal and non-thermal electrons around the black hole.Comment: 7 pages, 8 figures, 2 tables; accepted (09/11/2008) for publication in A&

    Modelling spectral and timing properties of accreting black holes: the hybrid hot flow paradigm

    Full text link
    The general picture that emerged by the end of 1990s from a large set of optical and X-ray, spectral and timing data was that the X-rays are produced in the innermost hot part of the accretion flow, while the optical/infrared (OIR) emission is mainly produced by the irradiated outer thin accretion disc. Recent multiwavelength observations of Galactic black hole transients show that the situation is not so simple. Fast variability in the OIR band, OIR excesses above the thermal emission and a complicated interplay between the X-ray and the OIR light curves imply that the OIR emitting region is much more compact. One of the popular hypotheses is that the jet contributes to the OIR emission and even is responsible for the bulk of the X-rays. However, this scenario is largely ad hoc and is in contradiction with many previously established facts. Alternatively, the hot accretion flow, known to be consistent with the X-ray spectral and timing data, is also a viable candidate to produce the OIR radiation. The hot-flow scenario naturally explains the power-law like OIR spectra, fast OIR variability and its complex relation to the X-rays if the hot flow contains non-thermal electrons (even in energetically negligible quantities), which are required by the presence of the MeV tail in Cyg X-1. The presence of non-thermal electrons also lowers the equilibrium electron temperature in the hot flow model to <100 keV, making it more consistent with observations. Here we argue that any viable model should simultaneously explain a large set of spectral and timing data and show that the hybrid (thermal/non-thermal) hot flow model satisfies most of the constraints.Comment: 26 pages, 13 figures. To be published in the Space Science Reviews and as hard cover in the Space Sciences Series of ISSI - The Physics of Accretion on to Black Holes (Springer Publisher
    corecore