46 research outputs found
Effects of nutrient enrichment on natural and transplanted salt marshes in Virginia : a literature review with management recommendations - Final Report
This study was initlated in response to a request by SEAS to review their technical recommendations concerning the fertilization of tidal salt marshes and determine whether those recommendations are sound in light of current scientific knowledge. The intention of this analysis was to determine whether benefits are derived from applying nutrients to marshes, and if so, whether those benefits outweigh the costs associated with the potential pollution of Chesapeake Bay\u27s tidal waters.
To provide insight into the effects of adding fertilizers to salt marshes, the scientific literature was examined from four perspectives:
1) the dynamics of ·nutrient cycling in natural marshes,
2) the effects of nutrient loading (fertilization) on natural marshes,
3) the effects of nutrient enrichment on planted (man-made) marshes, and
4) the effects of marsh fertilization on adjacent estuaries
Mean-field concept and direct numerical simulations of rotating magnetoconvection and the geodynamo
A comparison is made between mean-field models and direct numerical
simulations of rotating magnetoconvection and the geodynamo. The mean-field
coefficients are calculated with the fluid velocity taken from the direct
numerical simulations. The magnetic fields resulting from mean-field models are
then compared with the mean magnetic field from the direct numerical
simulations
Magnetic diffusivity tensor and dynamo effects in rotating and shearing turbulence
The turbulent magnetic diffusivity tensor is determined in the presence of
rotation or shear. The question is addressed whether dynamo action from the
shear-current effect can explain large-scale magnetic field generation found in
simulations with shear. For this purpose a set of evolution equations for the
response to imposed test fields is solved with turbulent and mean motions
calculated from the momentum and continuity equations. The corresponding
results for the electromotive force are used to calculate turbulent transport
coefficients. The diagonal components of the turbulent magnetic diffusivity
tensor are found to be very close together, but their values increase slightly
with increasing shear and decrease with increasing rotation rate. In the
presence of shear, the sign of the two off-diagonal components of the turbulent
magnetic diffusion tensor is the same and opposite to the sign of the shear.
This implies that dynamo action from the shear--current effect is impossible,
except perhaps for high magnetic Reynolds numbers. However, even though there
is no alpha effect on the average, the components of the alpha tensor display
Gaussian fluctuations around zero. These fluctuations are strong enough to
drive an incoherent alpha--shear dynamo. The incoherent shear--current effect,
on the other hand, is found to be subdominant.Comment: 12 pages, 13 figures, improved version, accepted by Ap
Hall drift of axisymmetric magnetic fields in solid neutron-star matter
Hall drift, i. e., transport of magnetic flux by the moving electrons giving
rise to the electrical current, may be the dominant effect causing the
evolution of the magnetic field in the solid crust of neutron stars. It is a
nonlinear process that, despite a number of efforts, is still not fully
understood. We use the Hall induction equation in axial symmetry to obtain some
general properties of nonevolving fields, as well as analyzing the evolution of
purely toroidal fields, their poloidal perturbations, and current-free, purely
poloidal fields. We also analyze energy conservation in Hall instabilities and
write down a variational principle for Hall equilibria. We show that the
evolution of any toroidal magnetic field can be described by Burgers' equation,
as previously found in plane-parallel geometry. It leads to sharp current
sheets that dissipate on the Hall time scale, yielding a stationary field
configuration that depends on a single, suitably defined coordinate. This
field, however, is unstable to poloidal perturbations, which grow as their
field lines are stretched by the background electron flow, as in instabilities
earlier found numerically. On the other hand, current-free poloidal
configurations are stable and could represent a long-lived crustal field
supported by currents in the fluid stellar core.Comment: 8 pages, 5 figure panels; new version with very small correction;
accepted by Astronomy & Astrophysic
Challenges of Brush Management Treatment Effectiveness in Southern Great Plains, United States
Woodland expansion is a global challenge documented under varying degrees of disturbance, climate, and land ownership patterns. In North American rangelands, mechanical and chemical brush management practices and prescribed fire are frequently promoted by agencies and used by private landowners to reduce woody plant cover. We assess the distribution of agency-supported cost sharing of brush management (2000−2017) in the southern Great Plains, United States, and evaluate the longevity of treatment application. We test the general expectation that the current brush management paradigm in the southern Great Plains reduces woody plants and conserves rangeland resources at broad scales. This study represents the most comprehensive assessment of treatment longevity following brush management in the southern Great Plains by linking confidential private lands management data to a national inventory program (US Department of Agriculture Natural Resources Conservation Service National Resources Inventory). We observed regional differences in the types of brush management techniques used in cost-sharing programs throughout the study area. Mechanical brush management was the most common practice cost shared in Texas, while a mixture of mechanical and chemical application was most common in Oklahoma. Prescribed fire was most common in Kansas with some areas receiving chemical treatment. Our analysis showed brush management, as implemented, did not reduce tree cover long term and minimally reduced shrub cover. Evidence to support the current brush management paradigm only existed at local site-level scales of analysis (40- to 50-acre area), but treatment effectiveness was short-lived. At regional scales, observed changes in woody plant cover showed little to no overall net reduction from 2000 to 2017. These findings bring into question the philosophy of the current brush management paradigm, its implementation as the default rangeland conservation practice, and its prioritization over alternative practices that prevent new woody plant establishment and enhance resilience of rangelands in the southern Great Plains region
Turning Points in the Evolution of Isolated Neutron Stars' Magnetic Fields
During the life of isolated neutron stars (NSs) their magnetic field passes
through a variety of evolutionary phases. Depending on its strength and
structure and on the physical state of the NS (e.g. cooling, rotation), the
field looks qualitatively and quantitatively different after each of these
phases. Three of them, the phase of MHD instabilities immediately after NS's
birth, the phase of fallback which may take place hours to months after NS's
birth, and the phase when strong temperature gradients may drive thermoelectric
instabilities, are concentrated in a period lasting from the end of the
proto--NS phase until 100, perhaps 1000 years, when the NS has become almost
isothermal. The further evolution of the magnetic field proceeds in general
inconspicuous since the star is in isolation. However, as soon as the product
of Larmor frequency and electron relaxation time, the so-called magnetization
parameter, locally and/or temporally considerably exceeds unity, phases, also
unstable ones, of dramatic changes of the field structure and magnitude can
appear. An overview is given about that field evolution phases, the outcome of
which makes a qualitative decision regarding the further evolution of the
magnetic field and its host NS.Comment: References updated, typos correcte
Simulations of galactic dynamos
We review our current understanding of galactic dynamo theory, paying
particular attention to numerical simulations both of the mean-field equations
and the original three-dimensional equations relevant to describing the
magnetic field evolution for a turbulent flow. We emphasize the theoretical
difficulties in explaining non-axisymmetric magnetic fields in galaxies and
discuss the observational basis for such results in terms of rotation measure
analysis. Next, we discuss nonlinear theory, the role of magnetic helicity
conservation and magnetic helicity fluxes. This leads to the possibility that
galactic magnetic fields may be bi-helical, with opposite signs of helicity and
large and small length scales. We discuss their observational signatures and
close by discussing the possibilities of explaining the origin of primordial
magnetic fields.Comment: 28 pages, 15 figure, to appear in Lecture Notes in Physics "Magnetic
fields in diffuse media", Eds. E. de Gouveia Dal Pino and A. Lazaria
Carbon storage of headwater riparian zones in an agricultural landscape
<p>Abstract</p> <p>Background</p> <p>In agricultural regions, streamside forests have been reduced in age and extent, or removed entirely to maximize arable cropland. Restoring and reforesting such riparian zones to mature forest, particularly along headwater streams (which constitute 90% of stream network length) would both increase carbon storage and improve water quality. Age and management-related cover/condition classes of headwater stream networks can be used to rapidly inventory carbon storage and sequestration potential if carbon storage capacity of conditions classes and their relative distribution on the landscape are known.</p> <p>Results</p> <p>Based on the distribution of riparian zone cover/condition classes in sampled headwater reaches, current and potential carbon storage was extrapolated to the remainder of the North Carolina Coastal Plain stream network. Carbon stored in headwater riparian reaches is only about 40% of its potential capacity, based on 242 MgC/ha stored in sampled mature riparian forest (forest > 50 y old). The carbon deficit along 57,700 km headwater Coastal Plain streams is equivalent to about 25TgC in 30-m-wide riparian buffer zones and 50 TgC in 60-m-wide buffer zones.</p> <p>Conclusions</p> <p>Estimating carbon storage in recognizable age-and cover-related condition classes provides a rapid way to better inventory current carbon storage, estimate storage capacity, and calculate the potential for additional storage. In light of the particular importance of buffer zones in headwater reaches in agricultural landscapes in ameliorating nutrient and sediment input to streams, encouraging the restoration of riparian zones to mature forest along headwater reaches worldwide has the potential to not only improve water quality, but also simultaneously reduce atmospheric CO<sub>2</sub>.</p
Ohm's Law for Plasma in General Relativity and Cowling's Theorem
The general-relativistic Ohm's law for a two-component plasma which includes
the gravitomagnetic force terms even in the case of quasi-neutrality has been
derived. The equations that describe the electromagnetic processes in a plasma
surrounding a neutron star are obtained by using the general relativistic form
of Maxwell equations in a geometry of slow rotating gravitational object. In
addition to the general-relativistic effect first discussed by Khanna \&
Camenzind (1996) we predict a mechanism of the generation of azimuthal current
under the general relativistic effect of dragging of inertial frames on radial
current in a plasma around neutron star. The azimuthal current being
proportional to the angular velocity of the dragging of inertial
frames can give valuable contribution on the evolution of the stellar magnetic
field if exceeds (
is the number density of the charged particles, is the conductivity of
plasma). Thus in general relativity a rotating neutron star, embedded in
plasma, can in principle generate axial-symmetric magnetic fields even in
axisymmetry. However, classical Cowling's antidynamo theorem, according to
which a stationary axial-symmetric magnetic field can not be sustained against
ohmic diffusion, has to be hold in the general-relativistic case for the
typical plasma being responsible for the rotating neutron star.Comment: Accepted for publication in Astrophysics & Space Scienc
Strongly magnetized pulsars: explosive events and evolution
Well before the radio discovery of pulsars offered the first observational
confirmation for their existence (Hewish et al., 1968), it had been suggested
that neutron stars might be endowed with very strong magnetic fields of
-G (Hoyle et al., 1964; Pacini, 1967). It is because of their
magnetic fields that these otherwise small ed inert, cooling dead stars emit
radio pulses and shine in various part of the electromagnetic spectrum. But the
presence of a strong magnetic field has more subtle and sometimes dramatic
consequences: In the last decades of observations indeed, evidence mounted that
it is likely the magnetic field that makes of an isolated neutron star what it
is among the different observational manifestations in which they come. The
contribution of the magnetic field to the energy budget of the neutron star can
be comparable or even exceed the available kinetic energy. The most magnetised
neutron stars in particular, the magnetars, exhibit an amazing assortment of
explosive events, underlining the importance of their magnetic field in their
lives. In this chapter we review the recent observational and theoretical
achievements, which not only confirmed the importance of the magnetic field in
the evolution of neutron stars, but also provide a promising unification scheme
for the different observational manifestations in which they appear. We focus
on the role of their magnetic field as an energy source behind their persistent
emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of
"NewCompStar" European COST Action MP1304, 43 pages, 8 figure