908 research outputs found
Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data
There is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p). from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentum transfer (Q(2)) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing epsilon at Q(2) = 1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q(2) approximate to 1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2
A theory of normed simulations
In existing simulation proof techniques, a single step in a lower-level
specification may be simulated by an extended execution fragment in a
higher-level one. As a result, it is cumbersome to mechanize these techniques
using general purpose theorem provers. Moreover, it is undecidable whether a
given relation is a simulation, even if tautology checking is decidable for the
underlying specification logic. This paper introduces various types of normed
simulations. In a normed simulation, each step in a lower-level specification
can be simulated by at most one step in the higher-level one, for any related
pair of states. In earlier work we demonstrated that normed simulations are
quite useful as a vehicle for the formalization of refinement proofs via
theorem provers. Here we show that normed simulations also have pleasant
theoretical properties: (1) under some reasonable assumptions, it is decidable
whether a given relation is a normed forward simulation, provided tautology
checking is decidable for the underlying logic; (2) at the semantic level,
normed forward and backward simulations together form a complete proof method
for establishing behavior inclusion, provided that the higher-level
specification has finite invisible nondeterminism.Comment: 31 pages, 10figure
Precision measurements of g(1) of the proton and of the deuteron with 6 GeV electrons
The inclusive polarized structure functions of the proton and deuteron, g(1)(p) and g(1)(d) , were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at laboratory angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual deep inelastic region kinematics, Q(2) \u3e 1 GeV2 and the final-state invariant mass W \u3e 2 GeV, the ratio of polarized to unpolarized structure functions g(1)/F-1 is found to be nearly independent of Q(2) at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative quantum chromodynamics, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions
Hadrons in the Nuclear Medium
Quantum Chromodynamics, the microscopic theory of strong interactions, has
not yet been applied to the calculation of nuclear wave functions. However, it
certainly provokes a number of specific questions and suggests the existence of
novel phenomena in nuclear physics which are not part of the the traditional
framework of the meson-nucleon description of nuclei. Many of these phenomena
are related to high nuclear densities and the role of color in nucleonic
interactions. Quantum fluctuations in the spatial separation between nucleons
may lead to local high density configurations of cold nuclear matter in nuclei,
up to four times larger than typical nuclear densities. We argue here that
experiments utilizing the higher energies available upon completion of the
Jefferson Laboratory energy upgrade will be able to probe the quark-gluon
structure of such high density configurations and therefore elucidate the
fundamental nature of nuclear matter. We review three key experimental
programs: quasi-elastic electro-disintegration of light nuclei, deep inelastic
scattering from nuclei at , and the measurement of tagged structure
functions. These interrelated programs are all aimed at the exploration of the
quark structure of high density nuclear configurations.
The study of the QCD dynamics of elementary hard processes is another
important research direction and nuclei provide a unique avenue to explore
these dynamics. We argue that the use of nuclear targets and large values of
momentum transfer at would allow us to determine whether the physics of the
nucleon form factors is dominated by spatially small configurations of three
quarks.Comment: 52 pages IOP style LaTex file and 20 eps figure
Experimental Study of Isovector Spin Sum Rules
We present the Bjorken integral extracted from Jefferson Lab experiment EG1b for 0.05\u3c Q2 2. The integral is fit to extract the twist-4 element f p−n2 which appears to be relatively large and negative. Systematic studies of this higher twist analysis establish its legitimacy at Q2 around 1  GeV2. We also performed an isospin decomposition of the generalized forward spin polarizability γ0. Although its isovector part provides a reliable test of the calculation techniques of chiral perturbation theory, our data disagree with the calculations
Precision Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetries A2
We have measured the spin structure functions g2p and g2d and the virtual
photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 0.7
< Q^2 < 20 GeV^2 by scattering 29.1 and 32.3 GeV longitudinally polarized
electrons from transversely polarized NH3 and 6LiD targets. Our measured g2
approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3
reduced matrix elements d2p and d2n are less than two standard deviations from
zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there
is no pathological behavior as x->0. The Efremov-Leader-Teryaev integral is
consistent with zero within our measured kinematic range. The absolute value of
A2 is significantly smaller than the sqrt[R(1+A1)/2] limit.Comment: 12 pages, 4 figures, 2 table
Precision Determination of the Neutron Spin Structure Function g1n
We report on a precision measurement of the neutron spin structure function
using deep inelastic scattering of polarized electrons by polarized
^3He. For the kinematic range 0.014<x<0.7 and 1 (GeV/c)^2< Q^2< 17 (GeV/c)^2,
we obtain at an average . We find relatively large negative
values for at low . The results call into question the usual Regge
theory method for extrapolating to x=0 to find the full neutron integral
, needed for testing quark-parton model and QCD sum rules.Comment: 5 pages, 3 figures To be published in Phys. Rev. Let
Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2
We have measured the spin structure functions g2p and g2d and the virtual
photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0
< Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons
from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is
significantly smaller than the sqrt{R} positivity limit over the measured
range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We
obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The
Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range
0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl
Measurement of the Proton and Deuteron Spin Structure Function g_1 in the Resonance Region
We have measured the proton and deuteron spin structure functions g_1^p and
g_1^d in the region of the nucleon resonances for W^2 < 5 GeV^2 and and GeV^2 by inelastically scattering 9.7 GeV polarized
electrons off polarized and targets. We observe
significant structure in g_1^p in the resonance region. We have used the
present results, together with the deep-inelastic data at higher W^2, to
extract . This is the first
information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn
limit at Q^2 = 0.Comment: 7 pages, 2 figure
- …