4,857 research outputs found

    Heat transport and thermal rectification in molecular junctions: a minimal model approach

    Get PDF
    Heat conduction properties are investigated in a molecular junction modeled as a two-strand ladder with strongly asymmetric thermal transport pathways. By confining anharmonic contributions to only one of the strands, it is shown that tuning of the interstrand coupling can lead to normal heat transport and to the emergence of a well-defined temperature gradient. More interestingly, thermal rectification is obtained around a critical value of the interstrand interaction and by appropriate asymmetries induced by the coupling to the thermal baths

    Effect of nitrogen gas in the agglomeration and photoluminescence of Zn-ZnO nanowires after high-temperature annealing

    Get PDF
    The effect of anti-agglomeration and enhanced photoluminescence after high-temperature annealing of Zn-ZnO nanowires in nitrogen at-mosphere is reported. The Zn-ZnO nanowires were deposited by the hot filament chemical vapor deposition technique and subsequentlyannealed at 1100±C in oxygen or nitrogen atmospheres. It was found that under both annealing atmospheres, the structure of the nanowireswas completely oxidized. Morphological studies suggest that annealing under oxygen-rich atmosphere, grain growth occurs, resulting in acontinuous surface with a micrograin-shaped structure. However, it seems that nitrogen-rich annealing partially prevents complete agglom-eration and longitudinal structures composed by nanometric grains were observed. Although photoluminescence properties of the annealednanowires are improved in both annealing atmospheres, it was observed that the PL spectrum of nanowires annealed in nitrogen showed astronger UV emission than that of the oxygen annealed nanowires

    Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions

    Get PDF
    This paper examines the effect of extreme summer temperatures on daily mortality in two large cities of Iberia: Lisbon (Portugal) and Madrid (Spain). Daily mortality and meteorological variables are analysed using the same methodology based on Box-Jenkins models. Results reveal that in both cases there is a triggering effect on mortality when maximum daily temperature exceeds a given threshold (34°C in Lisbon and 36°C in Madrid). The impact of most intense heat events is very similar for both cities, with significant mortality values occurring up to 3 days after the temperature threshold has been surpassed. This impact is measured as the percentual increase of mortality associated to a 1°C increase above the threshold temperature. In this respect, Lisbon shows a higher impact, 31%, as compared with Madrid at 21%. The difference can be attributed to demographic and socio-economic factors. Furthermore, the longer life span of Iberian women is critical to explain why, in both cities, females are more susceptible than males to heat effects, with an almost double mortality impact value. <P style="line-height: 20px;"> The analysis of Sea Level Pressure (SLP), 500hPa geopotential height and temperature fields reveals that, despite being relatively close to each other, Lisbon and Madrid have relatively different synoptic circulation anomalies associated with their respective extreme summer temperature days. The SLP field reveals higher anomalies for Lisbon, but extending over a smaller area. Extreme values in Madrid seem to require a more western location of the Azores High, embracing a greater area over Europe, even if it is not as deep as for Lisbon. The origin of the hot and dry air masses that usually lead to extreme heat days in both cities is located in Northern Africa. However, while Madrid maxima require wind blowing directly from the south, transporting heat from Southern Spain and Northern Africa, Lisbon maxima occur under more easterly conditions, when Northern African air flows over the central Iberian plateau, which had been previously heated

    Statistical analysis of Ni nanowires breaking processes: a numerical simulation study

    Full text link
    A statistical analysis of the breaking behavior of Ni nanowires is presented. Using molecular dynamic simulations, we have determined the time evolution of both the nanowire atomic structure and its minimum cross section (Sm(t)). Accumulating thousands of independent breaking events, Sm histograms are built and used to study the influence of the temperature, the crystalline stretching direction and the initial nanowire size. The proportion of monomers, dimers and more complex structures at the latest stages of the breaking process are calculated, finding important differences among results obtained for different nanowire orientations and sizes. Three main cases have been observed. (A) [111] stretching direction and large nanowire sizes: the wire evolves from more complex structures to monomers and dimers prior its rupture; well ordered structures is presented during the breaking process. (B) Large nanowires stretched along the [100] and [110] directions: the system mainly breaks from complex structures (low probability of finding monomers and dimers), having disordered regions during their breakage; at room temperature, a huge histogram peak around Sm=5 appears, showing the presence of long staggered pentagonal Ni wires with ...-5-1-5-... structure. (C) Initial wire size is small: strong size effects independently on the temperature and stretching direction. Finally, the local structure around monomers and dimmers do not depend on the stretching direction. These configurations differ from those usually chosen in static studies of conductance.Comment: 18 pages, 13 figure

    La Reforma institucional

    Get PDF
    • …
    corecore