61 research outputs found

    End-to-end Cardiac Ultrasound Simulation for a Better Understanding of Image Quality

    Get PDF
    International audienceUltrasound imaging is a very versatile and fast medical imag-ing modality, however it can suffer from serious image quality degrada-tion. The origin of such loss of image quality is often difficult to identifyin detail, therefore it makes it difficult to design probes and tools thatare less impacted. The objective of this manuscript is to present an end-to-end simulation pipeline that makes it possible to generate syntheticultrasound images while controlling every step of the pipeline, from thesimulated cardiac function, to the torso anatomy, probe parameters, andreconstruction process. Such a pipeline enables to vary every parameterin order to quantitatively evaluate its impact on the final image quality.We present here first results on classical ultrasound phantoms and a dig-ital heart. The utility of this pipeline is exemplified with the impact ofribs on the resulting cardiac ultrasound image

    Fast parameter inference in a biomechanical model of the left ventricle by using statistical emulation

    Get PDF
    A central problem in biomechanical studies of personalized human left ventricular modelling is estimating the material properties and biophysical parameters from in vivo clinical measurements in a timeframe that is suitable for use within a clinic. Understanding these properties can provide insight into heart function or dysfunction and help to inform personalized medicine. However, finding a solution to the differential equations which mathematically describe the kinematics and dynamics of the myocardium through numerical integration can be computationally expensive. To circumvent this issue, we use the concept of emulation to infer the myocardial properties of a healthy volunteer in a viable clinical timeframe by using in vivo magnetic resonance image data. Emulation methods avoid computationally expensive simulations from the left ventricular model by replacing the biomechanical model, which is defined in terms of explicit partial differential equations, with a surrogate model inferred from simulations generated before the arrival of a patient, vastly improving computational efficiency at the clinic. We compare and contrast two emulation strategies: emulation of the computational model outputs and emulation of the loss between the observed patient data and the computational model outputs. These strategies are tested with two interpolation methods, as well as two loss functions. The best combination of methods is found by comparing the accuracy of parameter inference on simulated data for each combination. This combination, using the output emulation method, with local Gaussian process interpolation and the Euclidean loss function, provides accurate parameter inference in both simulated and clinical data, with a reduction in the computational cost of about three orders of magnitude compared with numerical integration of the differential equations by using finite element discretization techniques

    Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models

    Get PDF
    Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model

    Validation of a biomechanical heart model using animal data with acute myocardial infarction

    Get PDF
    International audienceIn this paper, we validate a biomechanical heart model with animal data providing a controlled infarct condition with a follow-up over several weeks. First, we set up the personalized model using data coming from the healthy animal, and we show that the simulations compare accurately with the measured data, both for the tissue motion and for the blood pressures. Then, we demonstrate that we can also adequately represent the behavior of the acutely infarcted heart by changing only the parameters directly related to the pathology, and to the physiological state of the subject during the exams

    Patient-specific modeling for left ventricular mechanics using data-driven boundary energies

    Get PDF
    AbstractSupported by the wide range of available medical data available, cardiac biomechanical modeling has exhibited significant potential to improve our understanding of heart function and to assisting in patient diagnosis and treatment. A critical step towards the development of accurate patient-specific models is the deployment of boundary conditions capable of integrating data into the model to enhance model fidelity. This step is often hindered by sparse or noisy data that, if applied directly, can introduce non-physiological forces and artifacts into the model. To address these issues, in this paper we propose novel boundary conditions which aim to balance the accurate use of data with physiological boundary forces and model outcomes through the use of data-derived boundary energies. The introduced techniques employ Lagrange multipliers, penalty methods and moment-based constraints to achieve robustness to data of varying quality and quantity. The proposed methods are compared with commonly used boundary conditions over an idealized left ventricle as well as over in vivo models, exhibiting significant improvement in model accuracy. The boundary conditions are also employed in in vivo full-cycle models of healthy and diseased hearts, demonstrating the ability of the proposed approaches to reproduce data-derived deformation and physiological boundary forces over a varied range of cardiac function

    An adaptive Hybridizable Discontinuous Galerkin approach for cardiac electrophysiology

    Get PDF
    International audienceCardiac electrophysiology simulations are numerically challenging due to the propagation of a steep electrochemical wave front and thus require discretizations with small mesh sizes to obtain accurate results. In this work, we present an approach based on the Hybridizable Discontinuous Galerkin method (HDG), which allows an efficient implementation of high-order discretizations into a computational framework. In particular using the advantage of the discontinuous function space, we present an efficient p-adaptive strategy for accurately tracking the wave front. HDG allows to reduce the overall degrees of freedom in the final linear system to those only on the element interfaces. Additionally, we propose a rule for a suitable integration accuracy for the ionic current term depending on the polynomial order and the cell model to handle high-order polynomials. Our results show that for the same number of degrees of freedom coarse high-order elements provide more accurate results than fine low-order elements. Introducing p-adaptivity further reduces computational costs while maintaining accuracy by restricting the use of high-order elements to resolve the wave front. For a patient-specific simulation of a cardiac cycle p-adaptivity reduces the average number of degrees of freedom by 95% compared to the non-adaptive model. In addition to reducing computational costs, using coarse meshes with our p-adaptive high-order HDG method also simplifies practical aspects of mesh generation and postprocessing

    Trials on Tissue Contractility Estimation from Cardiac Cine MRI Using a Biomechanical Heart Model

    No full text
    International audienceIn this paper we apply specific data assimilation methods in order to estimate regional contractility parameters in a biomechanical heart model, using as measurements real Cine MR images obtained in an animal experiment. We assess the effectiveness of this estimation based on independent knowledge of the controlled infarcted condition, and on late enhancement images. Moreover, we show that the estimated contractility values can improve the model behavior in itself, and that they can serve as an indicator of the local heart function, namely, to assist medical diagnosis for the post-infarct detection of hypokinetic or akinetic regions in the myocardial tissu
    • …
    corecore