3,782 research outputs found

    A ship-based methodology for high precision atmospheric oxygen measurements and its application in the Southern Ocean region

    Get PDF
    A method for achieving continuous high precision measurements of atmospheric O-2 is presented based on a commercially available fuel-cell instrument, (Sable Systems, Oxzilla FC-II) with a precision of 7 per meg (approximately equivalent to 1.2 ppm) for a 6-min measurement. The Oxzilla was deployed on two voyages in the Western Pacific sector of the Southern Ocean, in February 2003 and in April 2004, making these the second set of continuous O-2 measurements ever made from a ship. The results show significant temporal variation in O-2, in the order of +/- 10 per meg over 6-hourly time intervals, and substantial spatial variation. Data from both voyages show an O-2 maximum centred on 50 degrees S, which is most likely to be the result of biologically driven O-2 outgassing in the region of subtropical convergence around New Zealand, and a decreasing O-2 trend towards Antarctica. O-2 from the ship-based measurements is elevated compared with measurements from the Scripps Institution of Oceanography flask-sampling network, and the O-2 maximum is also not captured in the network observations. This preliminary study shows that ship-based continuous measurements are a valuable addition to current fixed site sampling programmes for the understanding of ocean-atmosphere O-2 exchange processes. [References: 39

    DNA sequencing as a tool to monitor marine ecological status

    Full text link
    © 2017 Goodwin, Thompson, Duarte, Kahlke, Thompson, Marques and Caçador. Many ocean policies mandate integrated, ecosystem-based approaches to marine monitoring, driving a global need for efficient, low-cost bioindicators of marine ecological quality. Most traditional methods to assess biological quality rely on specialized expertise to provide visual identification of a limited set of specific taxonomic groups, a time-consuming process that can provide a narrow view of ecological status. In addition, microbial assemblages drive food webs but are not amenable to visual inspection and thus are largely excluded from detailed inventory. Molecular-based assessments of biodiversity and ecosystem function offer advantages over traditional methods and are increasingly being generated for a suite of taxa using a "microbes to mammals" or "barcodes to biomes" approach. Progress in these efforts coupled with continued improvements in high-throughput sequencing and bioinformatics pave the way for sequence data to be employed in formal integrated ecosystem evaluation, including food web assessments, as called for in the European Union Marine Strategy Framework Directive. DNA sequencing of bioindicators, both traditional (e.g., benthic macroinvertebrates, ichthyoplankton) and emerging (e.g., microbial assemblages, fish via eDNA), promises to improve assessment of marine biological quality by increasing the breadth, depth, and throughput of information and by reducing costs and reliance on specialized taxonomic expertise

    Stellar Explosions by Magnetic Towers

    Full text link
    We propose a magnetic mechanism for the collimated explosion of a massive star relevant for GRBs, XRFs and asymmetric supernovae. We apply Lynden-Bell's magnetic tower scenario to the interior of a massive rotating star after the core has collapsed to form a black hole with an accretion disk or a millisecond magnetar acting as a central engine. We solve the force-free Grad-Shafranov equation to calculate the magnetic structure and growth of a tower embedded in a stellar environment. The pressure of the toroidal magnetic field, continuously generated by differential rotation of the central engine, drives a rapid expansion which becomes vertically collimated after lateral force balance with the surrounding gas pressure is reached. The collimation naturally occurs because hoop stress concentrates magnetic field toward the rotation axis and inhibits lateral expansion. This leads to the growth of a self-collimated magnetic tower. When embedded in a massive star, the supersonic expansion of the tower drives a strong bow shock behind which an over-pressured cocoon forms. The cocoon confines the tower by supplying collimating pressure and provides stabilization against disruption due to MHD instabilities. Because the tower consists of closed field lines starting and ending on the central engine, mixing of baryons from the cocoon into the tower is suppressed. The channel cleared by the growing tower is thus plausibly free of baryons and allows the escape of magnetic energy from the central engine through the star. While propagating down the stellar density gradient, the tower accelerates and becomes relativistic. During the expansion, fast collisionless reconnection becomes possible resulting in dissipation of magnetic energy which may be responsible for GRB prompt emission.Comment: 19 pages, 8 figures, accepted to ApJ, updated references and additional discussion adde

    Melatonin Supplementation Improves Glycemic Control While Lowering Oxidative Stress in Type 2 Diabetes

    Get PDF
    The purpose of this investigation was to evaluate the effect of melatonin on glycemic control and oxidative stress (OS) in adults with type 2 diabetes (T2D). Fourteen subjects with T2D (10 female, 4 male; 52.5 ± 5.0 years) were randomly assigned to melatonin (MEL) or placebo groups (PLA) for 42 days, in a crossover design. Subjects ingested 10 mg of MEL or an identical placebo (PLA) 30 minutes prior to sleep. Fasting blood draws occurred at baseline, 42 days, and 84 days. Plasma malondialdehyde, a marker of OS, significantly decreased on MEL (-6.25±2.10 nmol/ml) compared to PLA (0.72±3.30, p=0.028). The change in hemoglobin A1c showed a total improvement of 0.33% following MEL supplementation compared to PLA (-0.24±0.23 % for MEL vs. 0.09±0.21 % for PLA, p=0.01), although no significant changes were noted in fasting plasma glucose or lipid levels. Daily melatonin may diminish OS and enhance glycemic control in adults with T2D

    The Dilemma of Using Sward Height as a Management Tool for Intensively Grazed Sheep Pasture in Spring

    Get PDF
    Sward height is often used as a tool for both animal and pasture management, especially when continuously grazing pasture. For example, sward height has been used to define the conditions for optimal feed intake of multiple-bearing ewes, both before and after lambing (Everett-Hincks et al.2005; Morris and Kenyon 2004). Sward height is easily applied by the grazier and so becomes an effective tool. However, changes in the leaf distribution and relative species makeup of the sward both seasonally (Thomson et al. 2001) and in response to grazing management (Webby and Pengelly 1986) mean that the amount of pasture per unit height will change. When these changes occur a dilemma is presented to the grazier. How do they manage the trade-off between a simple indicator for management decisions and the lost opportunity of harvesting pasture mass that may be accumulating below the assigned sward height? This paper presents data from an experiment that investigated the impacts of defoliation strategies on sward of differing starting masses, with defoliation management based on height rather than mass. The paper quantifies the accumulation of herbage below defoliation height and highlights the dilemma of using sward height as a management tool when aiming to maximise the utilisation of our pasture resource

    Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic

    Get PDF
    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope (13C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements

    Southern Ocean Overturning Compensation in an Eddy-Resolving Climate Simulation

    Get PDF
    The Southern Ocean’s Antarctic Circumpolar Current (ACC) and meridional overturning circulation (MOC) response to increasing zonal wind stress is, for the first time, analyzed in a high-resolution (0.1° ocean and 0.25° atmosphere), fully coupled global climate simulation using the Community Earth System Model. Results from a 20-yr wind perturbation experiment, where the Southern Hemisphere zonal wind stress is increased by 50% south of 30°S, show only marginal changes in the mean ACC transport through Drake Passage—an increase of 6% [136–144 Sverdrups (Sv; 1 Sv ≡ 10^6 m^3 s^(−1))] in the perturbation experiment compared with the control. However, the upper and lower circulation cells of the MOC do change. The lower cell is more affected than the upper cell with a maximum increase of 64% versus 39%, respectively. Changes in the MOC are directly linked to changes in water mass transformation from shifting surface isopycnals and sea ice melt, giving rise to changes in surface buoyancy forcing. The increase in transport of the lower cell leads to upwelling of warm and salty Circumpolar Deep Water and subsequent melting of sea ice surrounding Antarctica. The MOC is commonly supposed to be the sum of two opposing components: a wind- and transient-eddy overturning cell. Here, the transient-eddy overturning is virtually unchanged and consistent with a large-scale cancellation of localized regions of both enhancement and suppression of eddy kinetic energy along the mean path of the ACC. However, decomposing the time-mean overturning into a time- and zonal-mean component and a standing-eddy component reveals partial compensation between wind-driven and standing-eddy components of the circulation

    Progressive skeletal benefits of physical activity when young as assessed at the midshaft humerus in male baseball players

    Get PDF
    Physical activity benefits the skeleton, but there is contrasting evidence regarding whether benefits differ at different stages of growth. The current study demonstrates that physical activity should be encouraged at the earliest age possible and be continued into early adulthood to gain most skeletal benefits. INTRODUCTION: The current study explored physical activity-induced bone adaptation at different stages of somatic maturity by comparing side-to-side differences in midshaft humerus properties between male throwing athletes and controls. Throwers present an internally controlled model, while inclusion of control subjects removes normal arm dominance influences. METHODS: Throwing athletes (n = 90) and controls (n = 51) were categorized into maturity groups (pre, peri, post-early, post-mid, and post-late) based on estimated years from peak height velocity (10 years). Side-to-side percent differences in midshaft humerus cortical volumetric bone mineral density (Ct.vBMD) and bone mineral content (Ct.BMC); total (Tt.Ar), medullary (Me.Ar), and cortical (Ct.Ar) areas; average cortical thickness (Ct.Th); and polar Strength Strain Index (SSIP) were assessed. RESULTS: Significant interactions between physical activity and maturity on side-to-side differences in Ct.BMC, Tt.Ar, Ct.Ar, Me.Ar, Ct.Th, and SSIP resulted from the following: (1) greater throwing-to-nonthrowing arm differences than dominant-to-nondominant arm differences in controls (all p < 0.05) and (2) throwing-to-nonthrowing arm differences in throwers being progressively greater across maturity groups (all p < 0.05). Regional analyses revealed greatest adaptation in medial and lateral sectors, particularly in the three post-maturity groups. Years throwing predicted 59% of the variance of the variance in throwing-to-nonthrowing arm difference in SSIP (p < 0.001). CONCLUSION: These data suggest that physical activity has skeletal benefits beginning prior to and continuing beyond somatic maturation and that a longer duration of exposure to physical activity has cumulative skeletal benefits. Thus, physical activity should be encouraged at the earliest age possible and be continued into early adulthood to optimize skeletal benefits
    • …
    corecore