53 research outputs found

    Diverse and productive source of biopolymer inspiration: marine collagens

    Get PDF
    Marine biodiversity is expressed through the huge variety of vertebrate and invertebrate species inhabiting intertidal to deep-sea environments. The extraordinary variety of â forms and functionsâ  exhibited by marine animals suggests they are a promising source of bioactive molecules and provides potential inspiration for different biomimetic approaches. This diversity is familiar to biologists and has led to intensive investigation of metabolites, polysaccharides, and other compounds. However, marine collagens are less well-known. This review will provide detailed insight into the diversity of collagens present in marine species in terms of their genetics, structure, properties, and physiology. In the last part of the review the focus will be on the most common marine collagen sources and on the latest advances in the development of innovative materials exploiting, or inspired by, marine collagens.The authors are grateful for the financial support from European Union, under the scope of European Regional Development Fund((ERDF) through the POCTEP project 0687_NOVOMAR_1_P and Structured Project NORTE-01- 0145-FEDER-000021 and from the Portuguese Foundation for Science and Technology (FCT), under the scope of the BiogenInk project (M-ERA-NET2/0022/2016) and from the European Cooperation in Science & Technology program (EU COST). Grant title: “Stem cells of marine/aquatic inverte brates: from basic research to innovative applications” (MARISTEM). MSR acknowledges FCT for the Ph.D. scholarship (PD/BD/143091/2018)

    Mechanical properties of the compass depressors of the sea-urchin Paracentrotus lividus (Echinodermata, Echinoidea) and the effects of enzymes, neurotransmitters and synthetic tensilin-like protein

    Get PDF
    The compass depressors (CDs) of the sea-urchin lantern are ligaments consisting mainly of discontinuous collagen fibrils associated with a small population of myocytes. They are mutable collagenous structures, which can change their mechanical properties rapidly and reversibly under nervous control. The aims of this investigation were to characterise the baseline (i.e. unmanipulated) static mechanical properties of the CDs of Paracentrotus lividus by means of creep tests and incremental force-extension tests, and to determine the effects on their mechanical behaviour of a range of agents. Under constant load the CDs exhibited a three-phase creep curve, the mean coefficient of viscosity being 561±365 MPa.s. The stress-strain curve showed toe, linear and yield regions; the mean strain at the toe-linear inflection was 0.86±0.61; the mean Young's modulus was 18.62±10.30 MPa; and the mean tensile strength was 8.14±5.73 MPa. Hyaluronidase from Streptomyces hyalurolyticus had no effect on creep behaviour, whilst chondroitinase ABC prolonged primary creep but had no effect on secondary creep or on any force-extension parameters; it thus appears that neither hyaluronic acid nor sulphated glycosaminoglycans have an interfibrillar load transfer function in the CD. Acetylcholine, the muscarinic agonists arecoline and methacholine, and the nicotinic agonists nicotine and 1-[1-(3,4-dimethyl-phenyl)-ethyl]-piperazine produced an abrupt increase in CD viscosity; the CDs were not differentially sensitive to muscarinic or nicotinic agonists. CDs showed either no, or no consistent, response to adrenaline, L-glutamic acid, 5-hydroxytryptamine and γ-aminobutyric acid. Synthetic echinoid tensilin-like protein had a weak and inconsistent stiffening effect, indicating that, in contrast to holothurian tensilins, the echinoid molecule may not be involved in the regulation of collagenous tissue tensility. We compare in detail the mechanical behaviour of the CD with that of mammalian tendon and highlight its potential as a model system for investigating poorly understood aspects of the ontogeny and phylogeny of vertebrate collagenous tissues.(undefined)info:eu-repo/semantics/publishedVersio

    The case for the retention of the generic name Pterorrhiza Ehrenberg, 1834. Z.N. (S.) 1851

    No full text
    Volume: 26Start Page: 121End Page: 12

    Contractile Connective Tissue in Crinoids

    No full text
    Volume: 191Start Page: 1End Page:

    Anmerkungen zur Devon-Korrelationstabelle, B140di97 – B140dm97: Tabulata; Eifel

    No full text
    corecore