88 research outputs found

    TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain

    Get PDF
    Background: The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders. Methods: Here we use a well-characterised animal model of psoriasis-like skin inflammation—imiquimod—to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour. Results: We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity. Conclusions: These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response

    Targeting CXCR7/ACKR3 as a therapeutic strategy to promote remyelination in the adult central nervous system

    Get PDF
    Current treatment modalities for the neurodegenerative disease multiple sclerosis (MS) use disease-modifying immunosuppressive compounds but do not promote repair. Although several potential targets that may induce myelin production have been identified, there has yet to be an approved therapy that promotes remyelination in the damaged central nervous system (CNS). Remyelination of damaged axons requires the generation of new oligodendrocytes from oligodendrocyte progenitor cells (OPCs). Although OPCs are detected in MS lesions, repair of myelin is limited, contributing to progressive clinical deterioration. In the CNS, the chemokine CXCL12 promotes remyelination via CXCR4 activation on OPCs, resulting in their differentiation into myelinating oligodendrocytes. Although the CXCL12 scavenging receptor CXCR7/ACKR3 (CXCR7) is also expressed by OPCs, its role in myelin repair in the adult CNS is unknown. We show that during cuprizone-induced demyelination, in vivo CXCR7 antagonism augmented OPC proliferation, leading to increased numbers of mature oligodendrocytes within demyelinated lesions. CXCR7-mediated effects on remyelination required CXCR4 activation, as assessed via both phospho-S339-CXCR4–specific antibodies and administration of CXCR4 antagonists. These findings identify a role for CXCR7 in OPC maturation during remyelination and are the first to use a small molecule to therapeutically enhance myelin repair in the demyelinated adult CNS

    Effect of the Monocyte Chemoattractant Protein-1/CC Chemokine Receptor 2 System on Nephrin Expression in Streptozotocin-Treated Mice and Human Cultured Podocytes

    Get PDF
    OBJECTIVE-Monocyte chemoattractant protein-1 (MCP-1), a chemokine binding to the CC chemokine receptor 2 (CCR2) and promoting monocyte infiltration, has been implicated in the pathogenesis of diabetic nephropathy. To assess the potential relevance of the MCP-1/CCR2 system in the pathogenesis of diabetic proteinuria, we studied in vitro if MCP-1 binding to the CCR2 receptor modulates nephrin expression in cultured podocytes. Moreover, we investigated in vivo if glomerular CCR2 expression is altered in kidney biopsies from patients with diabetic nephropathy and whether lack of MCP-1 affects proteinuria and expression of nephrin in experimental diabetes. RESEARCH DESIGN AND METHODS-Expression of nephrin was assessed in human podocytes exposed to rh-MCP-1 by immunofluorescence and real-time PCR. Glomerular CCR2 expression was studied in 10 kidney sections from patients with overt nephropathy and eight control subjects by immunohistochemistry. Both wild-type and MCP-1 knockout mice were made diabetic with streptozotocin. Ten weeks after the onset of diabetes, albuminuria and expression of nephrin, synaptopodin, and zonula occludens-1 were examined by immunofluorescence and immunoblotting. RESULTS-In human podocytes, MCP-1 binding to the CCR2 receptor induced a significant reduction in nephrin both mRNA and protein expression via a Rho-dependent mechanism. The MCP-1 receptor, CCR2, was overexpressed in the glomerular podocytes of patients with overt nephropathy. In experimental diabetes, MCP-1 was overexpressed within the glomeruli and the absence of MCP-1 reduced both albuminuria and downregulation of nephrin and synaptopodin. CONCLUSIONS-These findings suggest that the MCP-1/CCR2 system may be relevant in the pathogenesis of proteinuria in diabetes

    Regulation of Motor Function and Behavior by Atypical Chemokine Receptor 1

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10519-014-9665-7Atypical Chemokine Receptor 1 (ACKR1), previously known as the Duffy Antigen Receptor for Chemokines, stands out among chemokine receptors for its high selective expression on Purkinje cells of the cerebellum, consistent with the ability of ACKR1 ligands to activate Purkinje cells in vitro. Nevertheless, evidence for ACKR1 regulation of brain function in vivo has been lacking. Here we demonstrate that Ackr1−/− mice have markedly impaired balance and ataxia when placed on a rotating rod and increased tremor when injected with harmaline, a drug that induces whole-body tremor by activating Purkinje cells. Ackr1−/− mice also exhibited impaired exploratory behavior, increased anxiety-like behavior and frequent episodes of marked hypoactivity under low-stress conditions. The behavioral phenotype of Ackr1−/− mice was the opposite of the phenotype occurring in mice with cerebellar degeneration and the defects persisted when Ackr1 was deficient only on non-hematopoietic cells. We conclude that normal motor function and behavior depend in part on negative regulation of Purkinje cell activity by Ackr1

    Glioblastoma cellular cross-talk converges on NF-κB to attenuate EGFR inhibitor sensitivity

    Get PDF
    Funding Information: We thank Dr. David James, Dr. Frederick Lang, Dr. Cameron Brennan, and Dr. Harley Kornblum for GBM-PDX neurospheres. We thank Dr. Karen Arden for continuous support and critical evaluation of the results. We thank Dr. Robert Davis, Dr. German Gomez, Dr. Tiffany Taylor, Dr. Rachel Reed, Dr. Melissa Mcalonis, and Dr. Sora Lee for technical support. In memory of Rosa Lupo. This work was supported by the Defeat GBM Research Collaborative, a subsidiary of the National Brain Tumor Society (F.B.F. and P.S.M.), R01-NS080939 (F.B.F.), the James S. McDonnell Foundation (F.B.F.), the National Cancer Institute (2T32CA009523-29A1) (A.H.T), and 1RO1NS097649-01 (C.C.C.). C.Z. was partially supported by an American-Italian Cancer Foundation post-doctoral research fellowship. F.L. received a Gao Feng Gao Yuan Scholarship Award. T.C.G., A.K.S., P.S.M., W.K.C., and F.B.F. receive salary and additional support from the Ludwig Institute for Cancer Research. Publisher Copyright: © 2017 Zanca et al.In glioblastoma (GBM), heterogeneous expression of amplified and mutated epidermal growth factor receptor (EGFR) presents a substantial challenge for the effective use of EGFR-directed therapeutics. Here we demonstrate that heterogeneous expression of the wild-type receptor and its constitutively active mutant form, EGFRvIII, limits sensitivity to these therapies through an interclonal communication mechanism mediated by interleukin-6 (IL-6) cytokine secreted from EGFRvIII-positive tumor cells. IL-6 activates a NF-κB signaling axis in a paracrine and autocrine manner, leading to bromodomain protein 4 (BRD4)-dependent expression of the prosurvival protein survivin (BIRC5) and attenuation of sensitivity to EGFR tyrosine kinase inhibitors (TKIs). NF-κB and survivin are coordinately up-regulated in GBM patient tumors, and functional inhibition of either protein or BRD4 in in vitro and in vivo models restores sensitivity to EGFR TKIs. These results provide a rationale for improving anti-EGFR therapeutic efficacy through pharmacological uncoupling of a convergence point of NF-κB-mediated survival that is leveraged by an interclonal circuitry mechanism established by intratumoral mutational heterogeneity.publishersversionPeer reviewe

    Neuronal Chemokines: Versatile Messengers In Central Nervous System Cell Interaction

    Get PDF
    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leukocytes into the CNS, only few studies describe chemokine expression in neurons. Nevertheless, the expression of neuronal chemokines and the corresponding chemokine receptors in CNS cells under physiological and pathological conditions indicates that neuronal chemokines contribute to CNS cell interaction. In this study, we review recent studies describing neuronal chemokine expression and discuss potential roles of neuronal chemokines in neuron–astrocyte, neuron–microglia, and neuron–neuron interaction

    Single Nucleotide Polymorphism in Gene Encoding Transcription Factor Prep1 Is Associated with HIV-1-Associated Dementia

    Get PDF
    BACKGROUND: Infection with HIV-1 may result in severe cognitive and motor impairment, referred to as HIV-1-associated dementia (HAD). While its prevalence has dropped significantly in the era of combination antiretroviral therapy, milder neurocognitive disorders persist with a high prevalence. To identify additional therapeutic targets for treating HIV-associated neurocognitive disorders, several candidate gene polymorphisms have been evaluated, but few have been replicated across multiple studies. METHODS: We here tested 7 candidate gene polymorphisms for association with HAD in a case-control study consisting of 86 HAD cases and 246 non-HAD AIDS patients as controls. Since infected monocytes and macrophages are thought to play an important role in the infection of the brain, 5 recently identified single nucleotide polymorphisms (SNPs) affecting HIV-1 replication in macrophages in vitro were also tested. RESULTS: The CCR5 wt/Δ32 genotype was only associated with HAD in individuals who developed AIDS prior to 1991, in agreement with the observed fading effect of this genotype on viral load set point. A significant difference in genotype distribution among all cases and controls irrespective of year of AIDS diagnosis was found only for a SNP in candidate gene PREP1 (p = 1.2 × 10(-5)). Prep1 has recently been identified as a transcription factor preferentially binding the -2,518 G allele in the promoter of the gene encoding MCP-1, a protein with a well established role in the etiology of HAD. CONCLUSION: These results support previous findings suggesting an important role for MCP-1 in the onset of HIV-1-associated neurocognitive disorders
    corecore