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Abstract

Background: Astrocytes are taking the center stage in neurotrauma and neurological diseases as they appear to
play a dominant role in the inflammatory processes associated with these conditions. Previously, we reported that
inhibiting NF-kB activation in astrocytes, using a transgenic mouse model (GFAP-IkBa-dn mice), results in improved
functional recovery, increased white matter preservation and axonal sparing following spinal cord injury (SCI). In the
present study, we sought to determine whether this improvement, due to inhibiting NF-kB activation in astrocytes,
could be the result of enhanced oligodendrogenesis in our transgenic mice.

Methods: To assess oligodendrogenesis in GFAP-IkBa-dn compared to wild-type (WT) littermate mice following SC|,

and WT littermate mice.

we used bromodeoxyuridine labeling along with cell-specific immuno-histochemistry, confocal microscopy and
quantitative cell counts. To further gain insight into the underlying molecular mechanisms leading to increased
white matter, we performed a microarray analysis in naive and 3 days, 3 and 6 weeks following SCI in GFAP-IkBa-dn

Results: Inhibition of astroglial NF-kB in GFAP-IkBa-dn mice resulted in enhanced oligodendrogenesis 6 weeks
following SCI and was associated with increased levels of myelin proteolipid protein compared to spinal cord
injured WT mice. The microarray data showed a large number of differentially expressed genes involved in
inflammatory and immune response between WT and transgenic mice. We did not find any difference in the
number of microglia/leukocytes infiltrating the spinal cord but did find differences in their level of expression of
toll-like receptor 4. We also found increased expression of the chemokine receptor CXCR4 on oligodendrocyte
progenitor cells and mature oligodendrocytes in the transgenic mice. Finally TNF receptor 2 levels were significantly
higher in the transgenic mice compared to WT following injury.

Conclusions: These studies suggest that one of the beneficial roles of blocking NF-kB in astrocytes is to promote
oligodendrogenesis through alteration of the inflammatory environment.
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Background

Spinal cord injury (SCI) is a devastating condition affect-
ing millions of people worldwide. Following the initial
trauma to the spinal cord, with loss of cells at the site of
impact, a second phase injury occurs characterized in
part by secretion of cytokines and chemokines produced
at the lesion site leading to recruitment of peripheral
leukocytes to the injury [1]. While an inflammatory
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response is necessary to clear debris at the site of injury
it, if uncontrolled, leads to an enlargement of the initial
lesion, with additional axonal damage, oligodendrocyte
cell death and demyelination with concomitant increased
loss of neurological function. The loss of oligodendro-
cytes, however, may be replaced by proliferating nerve/
glial antigen 2" (NG2) cells, also known as oligodendro-
cyte precursor cells (OPCs) [2]. These OPCs are able to
migrate to the injury site and differentiate into mature
myelinating oligodendrocytes if the environment is per-
missive [3]. The lack of effective remyelination is often
due to the presence of oligodendrocyte differentiation
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inhibitors in the injury environment, which can originate
from astrocytes, demyelinated axons or myelin debris
[4,5]. Until recently, the contribution of astrocytes to de-
myelinating diseases was underestimated. However, our
laboratory and others have now established a prominent
role of astrocytes in vivo in the pathogenesis of experi-
mental autoimmune encephalomyelitis (EAE) [6-8] and
axonal degeneration [9] and in vitro an increasing num-
ber of astroglial-derived factors have been identified that
modulate myelination processes [7,10,11].

One of the ways astrocytes respond to injury is by pro-
ducing cytokines and chemokines, many of which are
regulated by NF-kB. To study the role of astroglial
NF-kB in the pathogenesis of SCI, we previously gen-
erated transgenic mice (GFAP-IkBa-dn) in which NF-xB
is specifically inactivated in astrocytes by overexpression
of a truncated form of the inhibitor IkBa (IkBa-dn) under
the control of the glial fibrillary acidic protein (GFAP)
promoter [12]. In this previous study, we demonstrated
that blocking NF-«B activation in astrocytes resulted in re-
duced expression of cytokines and chemokines such as
CXCL10, CCL2 and transforming growth factor beta, and
in a smaller lesion volume and increased white matter
sparing along with a significant improvement in loco-
motor function following SCI. Further studies showed that
inhibition of astroglial NF-kB promoted axonal sparing
and sprouting of supraspinal and propriospinal axons,
which are essential for locomotion [13]. In a brain injury
model astroglial NF-kB was also found to play a central
role in directing immune-glial interactions by regulating
the expression of CCL2 through STAT2 [9]. One explan-
ation for the observed larger volume of white matter in
our transgenic mice could be a reduction in oligodendro-
cyte cell death or an increase in oligodendrogenesis.
Here, we are addressing the role of astroglial NF-«B
in regulating oligodendrogenesis in the chronically
injured spinal cord.

Methods

Mice

Adult (3 to 4 months) female GFAP-IkBa-dn (IkBa-dn)
transgenic mice were generated and characterized in our
laboratory [12]. All animals, IkBa-dn and wild-type
(WT) littermates (LM), were kept as a colony in a virus/
antigen-free environment at the University of Miami
Miller School of Medicine, Miami, FL, USA. IxBa-dn
mice were obtained by breeding heterozygous IkBa-dn
males with WT females. Mice were housed under diur-
nal lightning conditions and allowed free access to food
and water.

Induction of spinal cord injury
Surgeries were performed at the Animal and Surgical
Core Facility of the Miami Project to Cure Paralysis
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according to protocols approved by the Institutional
Animal Care and Use Committee of the University of
Miami. Contusion injury was induced with the Infinite
Horizon Device (Precision Systems and Instrumentation
LLC, Kentucky, USA). Female IkBa-dn (21.5 + 2.7 g)
and WT LM (21.0 + 2.8 g) mice were anesthetized
intraperitoneally (i.p.) using a ketamine (100 mg/kg,
VEDCO Inc.,, Saint Joseph, MO, USA)/xylazine (10 mg/kg,
VEDCO) cocktail, and a laminectomy was performed at
the vertebral level T9. The contusion device was lowered
onto the spinal cord at a predetermined impact force
of 50 kdynes (moderate injury) and the mice were in-
jured by a rapid displacement of the impounder
resulting in a spinal cord displacement of 400 to 500 pm.
Immediately after surgery, mice were sutured and injected
subcutaneously (s.c.) with 1 ml lactated Ringer’s Injection
USP (B. Braun, L7502, Bethlehem, PA, USA) to prevent
dehydration and housed separately in a recovery room,
where their post-surgical health status was observed.
Thereafter, mice were returned to the conventional animal
facility, where they were observed bi-daily for activity level
and general physical condition. Manual bladder expres-
sion was performed twice a day until bladder function was
regained. In addition, mice received s.c. prophylactic injec-
tions of antibiotic gentamicin (40 mg/kg, Hospira Inc.,
Lake Forest, IL, USA) for 7 days following SCI to prevent
urinary tract infections. Mice were allowed 3 days, 3, 6 or
7 weeks survival.

Bromodeoxyuridine injections and tissue processing

Mice in the 7 weeks survival group were injected i.p. with
bromodeoxyuridine (BrdU; 50 pg/g body weight; Sigma,
St. Louis, MO, USA) once a day for 7 days starting at week
5 post-SCI and were allowed to survive for 1 more week.
Then the mice, naive, 3 days, 6 and 7 weeks survival, were
deeply anesthetized and perfused through the left ventricle
using ice cold 0.01 M PBS followed by ice cold 4% para-
formaldehyde (PFA) in PBS. The spinal cords were
post-fixed in 4% PFA followed by immersion in 25%
sucrose in PBS overnight. Spinal cords were cut into
1-cm segments centered on the injury site and then
embedded in optimal cutting temperature (OCT) com-
pound (VWR International, Arlington Heights, IL, USA),
frozen and cut into 10 series of 25 um transverse cryostat
sections. Sections were stored at -20°C until further use.

Immunohistochemistry

Antibodies used for immunohistochemical staining were
rat anti-mouse CD11b (1:600, AbDSerotec, Hercules, CA,
USA, MCA711 clone 5C6) and rabbit anti-NG2 (1:500,
Chemicon, Billerica, MA, USA, AB5320). Isotype control
antibodies were rabbit immunoglobulin (Ig)G (1:20,000,
DakoCytomation, Carpinteria, CA, USA, X0903) and
rat IgG2, (1:600, Biosite, Plymouth Meeting, PA, USA,
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1G-851125). Visualization of CD11b* microglia-macrophages
was performed using the three-step biotin-streptavidin-
horseradish peroxidase technique described by Lambertsen
and colleagues, 2001 [14]. Visualization of NG2*
OPCs was performed using peroxidase-labeled “ready-
to-use” EnVision™ polymer (K4300, DakoCytomation)
according to the manufacturer’s instructions on spinal
cord sections demasked using 0.5% Pepsin (Sigma-
Aldrich, P-7012) in HCI and H,O for 10 minutes at
37°C. Sections were counterstained using Hematoxylin
Gills or Toluidine blue. Isotype controls were devoid
of staining (not shown).

Estimation of the total number of CD11b* and NG2* cells

Using an approximated stereological counting technique
unaffected by shrinkage/tissue resorption [15], we esti-
mated the total number of CD11b* and NG2" cells in
the spinal cord of naive IkBa-dn and WT mice and the
total number of CD11b" cells in IkBa-dn and WT mice
that had survived 3 days and 6 weeks after SCI. Briefly,
cells with a clearly identifiable H&E or Toluidine Blue
stained nucleus in conjunction with a detectable immu-
nohistochemical signal were counted on approximately
13 sections in naive cords and at 3 days, and on 17 sec-
tions 6 weeks after injury separated by 250 um from
each animal, using a 100x objective and a 2,470 pm?>
frame area stepping 150 pm/150 um in the XY-position
using the CAST Grid System from Olympus (Ballerup,
Denmark). The total number (N) of cells in each animal
was estimated using the formula: Estimate of N = XQ x
(1/ssf) x (1/asf) x (1/tsf), where 1/tsf is the thickness
sampling fraction (1/tsf = 1), 1/ssf the sampling section
fraction (1/ssf = 10), and 1/asf the area sampling fraction
(22,500/2,470) as previously described [16]. In naive
mice and for the time point of 3 days we, for consistency,
analyzed a total of 3.25 mm long piece of mouse spinal
cord, 1.625 mm on pre- and post-epicenter. For the time
point of 6 weeks we analyzed a 4.25 mm long piece of
mouse spinal cord, 2.125 mm on both sides of the
epicenter.

Estimation of the lesion and white matter volumes

The lesion volume and the white matter volume were
estimated on Luxol Fast Blue serial sections counter
stained with H&E wusing the Neurolucida software
(MBF Bioscience, Williston, VT, USA) as previously
described [12].

Immunofluorescent staining

For BrdU immunofluorescent staining, cryostat sections
were thawed at room temperature for 5 minutes, rinsed
in 1X PBS, and processed for antigen retrieval using 2N
HCI for 30 minutes at 37°C. The sections were then neu-
tralized for 10 minutes in 0.1 M sodium borate (pH 8.5)
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and rinsed in 1X PBS. After blocking 30 minutes in 5%
BSA/5% normal goat serum (NGS)/0.3% Triton X100/
PBS, rat anti-BrdU antibody (1:200, Novus Biologicals,
Littleton, CO, USA; diluted in 4% BSA/3% NGS/0.1%
Triton X100/PBS) was applied to the sections in com-
bination with either mouse anti-adenomatous polyposis
coli (APC; clone CC1) antibody (1:500, Calbiochem,
Billerica, MA, USA) or rabbit anti-NG2 antibody (1:500,
Chemicon), and incubated overnight at 4°C. For triple
immunostaining we used rat anti-BrdU (1:200, Novus
Biologicals) and rabbit anti-Olig2 (1:500, Millipore,
Billerica, MA, USA) with either mouse anti-NG2 (1:200,
Millipore) or mouse anti-APC (1:500, Calbiochem). Fol-
lowing extensive rinses in 1X PBS, Alexa-conjugated sec-
ondary antibodies (1:500, Molecular Probe, Grand Island,
NY, USA) were applied for 30 min at room temperature.
Sections were finally rinsed and mounted with Vectashield
(Vector Laboratories, Burlingame, CA, USA). To esti-
mate the number of BrdU"/CC1", BrdU"/NG2", and
total CC1"-cells following SCI, serial sections were counted
using Zeiss Axiovert 200M fluorescent microscope (63X
objective; Thornwood, NY, USA) and Stereo Investigator
software (MicroBrightField, Williston, VT, USA) for un-
biased stereological estimation of cell numbers. For each
section a 50 x 50 um counting frame and a 120 x 120 pm
grid was used to count the cells at 250 um intervals. A total
number of 11 sections, centered on the lesion site, were
counted. For the number of CC1" cells in the naive thoracic
spinal cord, a total number of 5 sections were counted.

For CXCR4 immunostaining, thawed cryostat sections
were fixed and permeabilized in ice-cold acetone for 10
minutes at —20°C, then rinsed in PBS and blocked for 1
hour in 10% NGS/PBS and 30 minutes in 5% BSA/PBS.
Sections were then incubated overnight with rabbit anti-
CXCR4 antibody (1:500, Abcam, Cambridge, MA, USA)
diluted in 5% BSA/1% NGS/PBS in combination with ei-
ther mouse anti-GFAP (1:500, BD Pharmingen, San Jose,
CA, USA) or mouse anti-APC (1:500, Calbiochem) anti-
bodies. Alexa-conjugated secondary antibodies (1:500,
Molecular Probes) diluted in 5% BSA/1% NGS/PBS were
applied to the rinsed sections for 30 minutes at room
temperature. Then sections were rinsed and mounted with
Vectashield with 4',6-diamidino-2-phenylindole (DAPI)
(Vector Laboratories). For toll-like receptor 4 (TLR4;
1:50, Santa Cruz, Dallas, TX, USA) and TNF receptor 2
(TNFR2; 1:200, Santa Cruz), a similar protocol was used
except that the sections were permeabilized and blocked in
5% BSA/5% NGS/0.3% Triton X100/PBS. Nuclei were vi-
sualized using a DAPI counterstain. Images were obtained
with an Olympus FluoView 1000 confocal microscope.

Total RNA isolation
Total RNA was isolated from spinal cord samples
(1.5 cm centered on the lesion site) using TRIzol reagent
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(Invitrogen, Grand Island, NY, USA) according to the
manufacturer’s directions. Precautions were taken to pre-
serve RNA integrity during the isolation, including rapid
dissection on ice with RNase-free dissecting tools followed
by flash-freezing in liquid nitrogen of the spinal cord
segment sample as previously described by Brambilla
and colleagues [6]. RNA integrity was determined with
the Bioanalyzer 2100 (Agilent Technologies, Santa Clara,
CA, USA).

Microarray analysis and data processing

Microarray experiments were conducted at the University
of Miami DNA and Microarray Core Facility (http://www.
mihg.org/weblog/core_resources/2007/11/microarray-and-
gene-expression.html) using Agilent Whole Mouse
Genome Oligo microarrays (Agilent Technologies). Ar-
rays were scanned at a 5 um resolution using a GenePix
4000B scanner (Axon Instruments at Molecular Devices)
and images analyzed with the software GenePix Pro 6.1
(Axon Instruments at Molecular Devices, LLC, Sunnyvale,
CA, USA). Extracted data were transferred to the software
Acuity 4.0 (Axon Instruments at Molecular Devices) for
quality control. Features for further analysis were selected
according to the following quality criteria: at least 90% of
the pixels in the spot with intensity higher than back-
ground plus two standard deviations; less than 2% satu-
rated pixels in the spot; signal to noise ratio (ratio of the
background subtracted mean pixel intensity to standard
deviation of background) 3 or above for each channel;
spot diameter between 80 and 110 pm; regression coeffi-
cient of ratios of pixel intensity 0.6 or above. To
identify significantly expressed genes the R software
LIMMA (Bioconductor, open source software at http://
www.bioconductor.org) [17] was used. “Within array”
normalization was carried out with Lowess normalization
and “between arrays” normalization with the “quantile”
algorithm in the LIMMA package. Differential expression
and false discovery rate (FDR) were assessed using a linear
model and empirical Bayes moderated F statistics [18,19].
Genes with FDR below 1% were considered statistically
significant. All primary microarray data were submitted to
the public database at the GEO website (http://www.ncbi.
nih.gov/geo; record number: GSE46695). Selected genes
were classified according to Gene Ontology category
“biological process” using Onto-Express [20]. Pathway
analysis was performed with WebGestalt [21]. Hierachical
clustering was performed using GeneSpring 10.0 (Agilent
Technologies). All experiments were performed in three
replicates/groups/time points.

Quantitative real-time PCR

An aliquot of 2 pg of spinal cord RNA from each time
point was reverse transcribed using the omniscript
RT-PCR kit (Qiagen, Valencia, CA, USA) as previously
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described [6]. qPCR was performed with the Rotor-Gene
3000 Real Time Cycler (Corbett Research, Valencia,
CA, USA) on cDNA samples with TAQurate GREEN
Real-Time PCR MasterMix (Epicentre Biotechnologies,
Madison, W1, USA) as previously described [6] for the fol-
lowing genes: CXCR4 (forward primer: TGT GAC CGC
CTT TAC CCC GAT AGC, reverse primer: TTC TGG
TGG CCC TTG GAG TGT GAC), TLR4 (forward pri-
mer: TGC CCC GCT TTC ACC TC, reverse primer:
ACC AAC GGC TCT GAA TAA AGT GT), Lingo-1 (for-
ward primer: GAC TGC CGG CTG CTG TGG GTG TT,
reverse primer: CCG GCG GCA GGT GAA GTA GTT
GQG), Sox17 (forward primer: CGG CGC AAG CAG GTG
AAG, reverse primer: GGC TCC GGG AAA GGC AGA
C), CNPase (forward primer: AGA TGG TGT CCG CTG
ATGCTT AC, reverse primer: CTC CCG CTC GTG
GTT GGT), CD11b (forward primer: GCC CCA AGA
AAG TAG CAA GGA GTG, reverse primer: TAC GTG
AGC GGC CAG GGT CTA AAG) and ICAM]1 (forward
primer: TGA GCG AGA TCG GGG AGG ACA G, re-
verse primer: GTG GCA GCG CAG GGT GAG GT).
Relative expression was calculated by comparison with a
standard curve after normalization to B-actin [6].

Western blotting

Spinal cords (1.5 cm centered on the injury site) were
homogenized in 300 pl radio immunoprecipitation assay
buffer (0.01 M sodium phosphate pH 7.2, 0.15 M NaCl,
1% NP40, 1% sodium deoxycholate, 0.1% SDS, 2 mM
EDTA) supplemented with complete protease inhibitor
cocktail (Roche, Indianapolis, IN, USA), incubated for 30
minutes at 4°C on an end-over-end rotator, and
centrifuged at 4°C for 10 minutes at 14,000 rpm. The
supernatant was then transferred to a fresh tube on ice
and an aliquot was used for protein quantification using
the DC Protein Assay (Biorad, Hercules, CA, USA). Equal
amounts of proteins were resolved by SDS-PAGE on 10%
or 15% gels, transferred to nitrocellulose membranes, and
blocked in 5% nonfat milk in 0.1 M Tris buffered saline-
triton (TBS-T) for 1 hour at room temperature. Mem-
branes were probed with an antibody recognizing either
proteolipid protein (PLP; mouse monoclonal, Millipore,
1:250), CXCR4 (rabbit polyclonal, Abcam, 1:500), Foxc2
(mouse monoclonal, Santa Cruz, 1:500), TLR4 (mouse
monoclonal, Santa Cruz, 1:200), TNFR2 (rabbit polyclonal,
Santa Cruz, 1:200), CXCR7 (rabbit polyclonal, GeneTex,
Irvine, CA, USA, 1:1000) followed by horseradish per-
oxidase—conjugated secondary antibody (GE Healthcare,
Little Chalfont, Buckinghamshire, UK, 1:2000). Pro-
teins were visualized with a chemiluminescent kit (ECL;
GE Healthcare). Blots were also probed for B-actin
(mouse monoclonal, Santa Cruz, 1:500) as a loading
control. The data were analyzed using Quantity One soft-
ware (Biorad).


http://www.mihg.org/weblog/core_resources/2007/11/microarray-and-gene-expression.html
http://www.mihg.org/weblog/core_resources/2007/11/microarray-and-gene-expression.html
http://www.mihg.org/weblog/core_resources/2007/11/microarray-and-gene-expression.html
http://www.bioconductor.org
http://www.bioconductor.org
http://www.ncbi.nih.gov/geo
http://www.ncbi.nih.gov/geo

Bracchi-Ricard et al. Journal of Neuroinflammation 2013, 10:92
http://www.jneuroinflammation.com/content/10/1/92

Data analysis

One-way or two-way analysis of variance (ANOVA)
followed by the appropriate post hoc test and Student’s
t-test (one-tailed and two-tailed). Statistical analyses
were performed using Prism 4.0b software for Macintosh,
GraphPad Software, San Diego, CA, USA, www.graphpad.
com. Data are presented as mean + SEM. Statistical sig-
nificance was established for P < 0.05.

Results

Oligodendrogenesis is increased following spinal cord
injury in mice lacking functional NF-kB signaling in
astrocytes

Based on our previous findings of a reduced lesion vol-
ume, increased white matter preservation and associated
improvements in locomotor function 8 weeks following
moderate contusion to the thoracic spinal cord in mice
lacking astroglial NF-kB [12], we wanted to investigate
the possibility that the observed increase in white matter
is due, in part, to enhanced oligodendrogenesis. Since
our GFAP-IkBa-dn mice were generated 7 years ago and
may have been affected by genetic drift over time, we
decided to confirm by RT-PCR that the transgene
(IkBa-dn) was indeed still expressed in the spinal cord of
our transgenic mice (Figure 1A). We also confirmed that,
6 weeks following SCI, GFAP-IkBa-dn mice displayed a
significantly smaller lesion volume, associated with a sig-
nificantly larger white matter volume (Figure 1B-D). This
was also reflected by a significant improvement of loco-
motor performance in the open field test, scored by the
basso mouse scale [22] (IkBa-dn: 5.4 vs WT: 4.1, P < 0.05).
Next, we investigated whether there were any abnormal-
ities in the morphology of the spinal cord and in the total
number of OPCs and mature oligodendrocytes, due to ex-
pression of the IkBa-dn transgene in astrocytes. In order
to do so, total numbers of NG2" OPCs (Figure 1E, upper
panel) and CC1" oligodendrocytes (Figure 1E, lower
panel) were estimated in spinal cord sections from naive
WT and IkBa-dn mice. We found that the spinal
cords from naive WT and IkBa-dn mice appeared
morphologically identical [12] and displayed similar
numbers of NG2* OPCs (WT: 2,479 + 181; IkBa-dn:
3,397 + 683, P = 0.23) and CC1" oligodendrocytes (WT:
59,190 + 2,086; IkBa-dn: 61,540 + 2,447, P = 0.504)
(Figure 1E).

In order to investigate changes in oligodendrogenesis
following SCI, we administered BrdU daily for 7 days
starting the fifth week following injury and sacrificed the
mice 2 weeks later (7 weeks post-SCI) so that the BrdU-
labeled OPCs had time to differentiate into mature
oligodendrocytes [2] (Figure 2A). To investigate changes
in numbers of newly formed OPCs and newly formed
mature oligodendrocytes, we performed double immuno-
staining for BrdU, and NG2 or CCl1, respectively,
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and estimated the total number of BrdU'NG2" and
BrdU"CC1" cells in 2-mm long spinal cord segments
7 weeks after SCI. We found no significant difference in
the number of BrdU'NG2" cells between IkBa-dn mice
(11,140 + 503) and WT mice (10,640 + 679) (P = 0.57)
(Figure 2B,C). However, we did find a significant increase
in the number of BrdU'CC1" cells in the injured spinal
cord of IkBa-dn mice (20,550 + 3,043) compared to that
of WT mice (11,400 + 1,062) (Figure 2D, P < 0.05)
suggesting that blocking astroglial NF-kB promotes
oligodendrogenesis. Furthermore, when looking at the
distribution of the BrdU'CC1" cells rostrally and
caudally from the epicenter, we found significantly
more BrdU'CC1" cells around the epicenter in the
IkBa-dn mice compared to WT mice, suggesting that
the microenvironment within or near the lesion core,
in the IkBa-dn mice, is more permissive for differenti-
ation of OPCs into mature oligodendrocytes (Figure 2E).
Triple immunofluorescence staining confirmed that
BrdU'NG2" and BrdU'CC1" cells colocalized with
Olig2" cells, another marker for OPCs and mature ol-
igodendrocytes [23] (Figure 2F). To further confirm
increased oligodendrogenesis in the IkBa-dn mice, we
estimated the total number of mature CC1" oligoden-
drocytes in 2-mm long spinal cord segments 7 weeks
after SCI. Supporting our finding of increasing numbers of
mature BrdU'CC1" oligodendrocytes in IkBa-dn mice
(Figure 2D), we found significantly more CC1" cells (P =
0.04) in the injured spinal cord of IkBa-dn mice (155,800 +
13,490) compared to injured WT spinal cord (104,300 +
6,356) 7 weeks after SCI (Figure 2G, left). These data were
furthermore supported by findings of significantly in-
creased PLP protein levels in the spinal cords of IkBa-dn
mice 6 weeks after injury compared to injured WT mice
(Figure 2G, right), which further points to an increased
oligodendrogenesis after SCI in IkBa-dn mice. Collectively,
these data demonstrate that inhibiting astroglial NF-kB
enhances oligodendrogenesis following SCI.

Microarray analysis of the spinal cord from wild-type and
IkBa-dn mice following spinal cord injury

To elucidate the molecular mechanisms leading to the
observed increased oligodendrogenesis, we compared
gene expression profiles using Whole Mouse Genome
microarrays, which included 41,000 genes and tran-
scripts from naive and injured WT and IxBa-dn mice.
The experiments were performed using three biological
replicates per group using naive animals as well as three
different survival times - 3 days, 3 and 6 weeks post-SCIL.
We concentrated on genes with a fold-change greater
than 2.0 and a FDR <0.1%. We identified 66 differentially
expressed genes between naive mice, 35 genes were dif-
ferentially expressed 3 days after SCI, 108 genes were
differentially expressed at 3 weeks and at 6 weeks 994
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genes were found to be differentially expressed (Table 1).
Significant changes were especially present 6 weeks after
SCI in genes involved in inflammatory/immune responses,
chemotaxis, motor axon guidance, axonal growth, cell
death, signal transduction, and so on, all processes that
may influence functional recovery. For a functional
classification of a subset of transcripts 6 weeks after
SCI please refer to Table 2 and The National Center for

Biotechnology Information Gene Expression Omnibus
GSE46695 for a list of all transcripts. Relative transcript
enrichment detected by microarrays was confirmed by
qPCR for eight genes (Ki67, Sox17, CD11b, TLR4, CXCR4,
Lingo-1, ICAM1 and CNPase) selected from the 6 weeks
gene groups (Figure 3A-H).

Thus far we have presented data suggesting that
inhibiting NF-kB activation in astrocytes promotes an
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(See figure on previous page.)

Figure 2 Oligodendrogenesis is increased in IkBa-dn mice lacking functional NF-kB signaling in astrocytes. (A) Mice were subjected to
moderate spinal cord contusion at T9 and received bromodeoxyuridine (BrdU) injections once a day for 1 week starting 5 weeks post-injury.
Spinal cord tissue (in total 2 mm centered on injury) was analyzed 7 weeks post-spinal cord injury (SCl). (B, C) The total estimated number of
BrdU™NG2™ cells using Stereo Investigator software in a 2-mm segment of spinal cord centered on the site of injury was similar between
wild-type (WT) and IkBa-dn mice (B) with a similar distribution over the injured spinal cord (C). (D, E) In contrast, the total estimated number of
BrdU*CC1™ cells was significantly increased in IkBa-dn mice (D, *P < 0.05, Student's t-test) with a higher number of newly formed
oligodendrocytes around the epicenter compared to those in WT mice (E, two-way analysis of variance; *P<0.05 Bonferroni post-test). (F)
Representative pictures of BrdU"NG2" and Brdu*CC1" cells showing co-labeling with the oligodendroglial lineage marker Olig2. (G, left) At this
time point, the total number of mature oligodendrocyte (CC1* cells) in the injured spinal cord of IkBa-dn mice was also significantly (*P < 0.05,
Student’s t-test) higher than in WT mice. (G, right) Western blot quantification on mice with 6 weeks survival also showed a significant increase in
the myelin protein PLP in IkBa-dn mice compared to WT mice (*P < 0.05, Student's t-test) supporting increased oligodendrogenesis in IkBa-dn

mice already at 6 weeks post-SCI. N = 4 animals per group. NG2, nerve/glial antigen 2.

environment favorable for oligodendrogenesis (Figures 2
and 3). To explore oligodendrogenesis further, we focused
on genes previously demonstrated to be important in
cell proliferation and oligodendrogenesis such as
Sox17 and Lingo-1 [24,25]. While not a specific indi-
cator of oligodendrogenesis, we found that Ki67, a
general marker of proliferation, was significantly ele-
vated 3 days post-SCI in both WT and IxBa-dn mice
relative to naive animals but only in IkBa-dn mice 6
weeks post-SCI (Figure 3A). Some possible sources
for Ki67 expression, besides infiltrating immune cells,
are also OPCs. Sox17, a transcription factor important
in oligodendrocyte development [26], was significantly
upregulated in IkBa-dn mice 6 weeks post-SCI (Figure 3B),
while Lingo-1, a negative regulator of oligodendrogenesis
[27], was significantly reduced in IxkBa-dn mice at this
time point (Figure 3F). These findings support the data
presented in Figure 2 showing significantly increased
numbers of BrdU'CC1* oligodendrocytes, significantly
increased numbers of CC1" oligodendrocytes and signifi-
cantly increased PLP levels in IkBa-dn mice, suggesting
increased oligodendrogenesis in the IkBa-dn mice com-
pared to WT mice.

Inhibition of astroglial NF-kB results in an altered
inflammatory state that is supportive of
oligodendrogenesis after spinal cord injury

An inflammatory reaction following traumatic injury is
necessary to contain the injury and clear debris, and

Table 1 Microarray data summary

Time post-SCI  Total number Genes under Genes over
of differentially  expressed in expressed in
expressed GFAP-IkBa-dn  GFAP-IkBa-dn
genes mice mice

Naive 66 15 (22.7%) 51 (77.3%)

3 days 35 3 (8.6%) 32 (91.4%)

3 weeks 108 69 (63.9%) 39 (36.1%)

6 weeks 994 596 (60.0%) 398 (40.0%)

Number of differentially expressed genes between wild-type and GFAP-IkBa-dn
mice at various time points following spinal cord injury (SCI). Results are derived
from the analysis of three biological replicates/time points.

microglia - the resident macrophages of the central ner-
vous system (CNS) - are rapidly activated following dis-
turbances and secrete pro-inflammatory cytokines
[28,29]. Different phenotypes of microglia have been
identified [30] and even though often associated with
neuroinflammatory processes, their role has been ex-
tended to maintenance and repair of the nervous tissue
where they reside [31,32], some of them being support-
ive of remyelination [33,34]. Also, distinct subsets of
macrophages have been shown to cause either toxicity
or regeneration in the injured mouse spinal cord [35].
Since in the present study we found a significant in-
crease in CD11b mRNA levels using qPCR in our
IkBa-dn mice compared to WT mice at 6 weeks

Table 2 Genes associated directly or indirectly with
myelination

Gene name Accession Fold change
number GFAP-IkBa-dn mice

versus wild-type
mice at 6 weeks

Chemokine-Chemokine receptors

Cxcl12 NM_013655 +2.19

Cxcr4 NM_009911 + 201

Transcription factors

Foxc2 NM_013519 +6.55

Sox17 NM_0011441 + 535

Tcf4 NM_009333 + 224

Proliferation marker

mKi67 X82786 + 243

Microglia/leukocytes

ltgal (CD11b) NM_176922 +203

CD200r NM_021325 + 249

TLR4 NM_021297 +2.38

Inhibitor

Lingo1 BC008626 -207

Myelin

PMP2 NM_001030305 + 2.33
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post-SCI (Figure 3C), we further estimated the total
number of CD11b" microglia/leukocytes (Figure 4A,
shown for naive and 6 weeks). In naive mice there were
significantly more CD11b" cells in WT mice compared to
IkBa-dn mice (P < 0.05, Figure 4B). However, counting
CD11b* microglia/leukocytes in both IkBa-dn and WT
mice 3 days and 6 weeks after SCI did not show evidence
of a difference in the total number of CD11b" cells
between the two genotypes, even though the total
number of CD11b* cells was significantly increased in
both IkBa-dn and WT mice 6 weeks after SCI com-
pared to naive mice (P < 0.001, one-way ANOVA)
(Figure 4A,B). These data suggest that the microglial
numbers and leukocyte infiltration is similar between
IkBa-dn and WT mice but that the transcriptional

regulation of CD11b mRNA levels and possibly the
activation status of these cells 6 weeks after SCI are
differently regulated in IkBa-dn mice compared to
WT mice.

Since TLR4, a pattern recognition receptor important
in innate immunity that has been shown to modulate
myelination, astrogliosis and macrophage activation
[34,36], was found to be up-regulated in the microarray
at 6 weeks post-injury in the IkBa-dn mice, we con-
firmed by qPCR the significant increase in TLR4 mRNA
in IxkBa-dn mice (Figure 3D). We further examined the
cellular expression of TLR4 in injured spinal cord tissue
from WT and IkBa-dn mice by immunohistochemistry.
TLR4 immunoreactivity colocalized almost exclusively
with CD11b" microglia/leukocytes in both WT and
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Figure 4 Quantification of microglia/leukocytes in the naive, 3 days, and 6 weeks injured spinal cord. (A) Representative
immunohistochemical staining for CD11b in naive wild-type (WT) and IkBa-dn mice and 6 weeks (wks) following spinal cord injury (SCI).

(B) The total number of CD11b" cells were significantly increased in naive IkBa-dn mice compared to WT mice and significantly increased

6 weeks after SCl in both IkBa-dn and WT mice. Each bar represents the average cell count + SEM. *P < 0.05, **P < 0.01, N = 4 to 9 animals per
group. (C) Representative photomicrographs of immunohistochemical stainings for toll-like receptor 4 (TLR4) in the injured spinal cord white
matter of WT and IkBa-dn mice, showing a robust staining on CD11b" microglia/leukocytes from the chronically injured IkBa-dn mice.

(D) Western blot quantification showing a significant increase in TLR4 in IkBa-dn mice (TG) compared to WT mice 6 weeks after SCI. N =3 to 4
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naive

IkBa-dn mice and showed stronger immunoreactivity in
the injured spinal cord of the IkBa-dn mice compared to
WT (Figure 4C), suggesting a difference in the state of
activation of microglia/leukocytes between the two geno-
types. This was further supported by the finding of a sig-
nificant increase in TLR4 protein levels in IkBa-dn mice
6 weeks post-SCI compared to WT LM (P < 0.05,
Figure 4D).

CXCR4 expression is increased on oligodendrocytes
following spinal cord injury

Chemokines and their receptors are also known to be im-
portant regulators of inflammation and repair processes
following CNS injury [37]. Signaling through the alpha
chemokine receptor CXCR4 is required for migration of
neuronal precursors, axon guidance/pathfinding, neurite
growth and maintenance of neuronal progenitor cells as
well as oligodendrocyte progenitors and remyelination
[38-42]. Furthermore, CXCL12 signaling through CXCR4
enhances the infiltration of monocytes and lympho-
cytes in different inflammation models [43,44]. In line
with these findings, CXCR4 mRNA levels were signifi-
cantly upregulated in IkBa-dn and WT mice at 3 and
6 weeks after SCI compared to naive mice (Figure 3E).

Furthermore, at 6 weeks post-SCI, IkBa-dn mice displayed
significantly higher CXCR4 mRNA levels compared to
injured WT mice (Figure 3E). This was further confirmed
using western blotting and immunohistochemical expres-
sion analysis of CXCR4 (Figure 5A,B). In line with
qPCR analysis, CXCR4 protein levels were signifi-
cantly upregulated in IkBa-dn mice 6 weeks after SCI
compared to naive mice, (P = 0.013) and compared
to WT mice with 6 weeks survival (P = 0.038, Figure 5A).
CXCR4 was expressed in CC1" oligodendrocytes both in
IkBa-dn and WT mice with increased expression in
IxBa-dn mice (Figure 5B, shown for 6 weeks). CXCR4
was also found to be expressed in some NG2"-cells
6 weeks after SCI (Figure 5C).

Since the transcription factor Foxc2 is important in
CXCR4 regulation [45], we further compared Foxc2
expression at this time point using western blotting. In
line with the findings of significantly increased protein
CXCR4 levels in IkBa-dn compared to WT mice, Foxc2
protein levels were also significantly upregulated 6 weeks
post-SCI in IkBa-dn compared to WT mice (Figure 5D).

Furthermore, CXCR7 has been implicated in the
pathophysiology of demyelination and axonal injury in
EAE where antagonism of CXCR7 promotes functional
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recovery and reduces axonal injury [46]. CXCR7 was not
in the microarray analysis but based upon the role it
plays in EAE and our present results on CXCR4, we
investigated CXCR7 protein expression following SCI
(Figure 5E). We detected a significant increase in
CXCR?7 expression 6 weeks post-SCI in WT mice but
not in IkBa-dn mice compared to naive spinal cords
(Figure 5E), suggesting that CXCR7 expression is signifi-
cantly reduced by inhibition of NF-kB in astrocytes.

IkBa-dn mice displayed increased TNFR2 expression
compared to wild-type mice after spinal cord injury
TNF signaling through TNFR2 has been shown to pro-
mote proliferation of OPCs and remyelination [47] and
recently, using XPro1595 a specific inhibitor for soluble

TNF in EAE, we demonstrated a beneficial role of
TNEFR2 signaling on functional outcome [48]. Based
upon these data, we sought to determine what effect
inhibiting astroglial NF-kB would have on TNFR2 ex-
pression following SCI. As shown in Figure 6A, there
was significantly increased TNFR2 protein expression in
IkBa-dn mice 6 weeks after injury compared to injured
WT mice (Figure 6A), due to a decrease in protein levels
in WT mice that did not occur in IkBa-dn mice.
These findings were supported by immunohistochemi-
cal stainings showing increased levels of TNFR2 in
WT mice compared to IkBa-dn mice, whereas the levels
in naive spinal cords appeared similar (Figure 6B). In naive
spinal cords, TNFR2 was expressed primarily by oligoden-
drocytes (Figure 6B) whereas 6 weeks after SCI, TNFR2
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Figure 6 TNFR2 expression is increased in the IkBa-dn injured
spinal cord compared to wild-type 6 weeks post-spinal cord
injury. (A) Quantification of TNFR2 protein expression levels in the
injured spinal cord of wild-type (WT) and IkBa-dn mice showing
significantly less protein in WT mice 6 weeks after spinal cord injury
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*P < 0.05. N = 3 to 4 animals per group. (B) Representative confocal
images of mature CC1 oligodendrocytes and TNFR2 expression in
naive and injured spinal cord from WT and IkBa-dn mice, showing that
a subset of TNFR2* cells co-localizes with CC1* oligodendrocytes.

\

expression was also expressed in other types of cells
(Figure 6B), probably microglia and infiltrating macro-
phages, as shown previously for other CNS injuries
[49]. These data, along with our previous studies, sug-
gest that enhanced oligodendrogenesis could be due
in part to the sustained expression of TNFR2 in
IkBa-dn mice following injury.
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Collectively, our data suggest that sustained expression
of TNFR2 in IkBa-dn mice enhances the expression of
CXCR4 and thereby promotes an environment support-
ive of oligodendrogenesis and remyelination. Further-
more, CXCR7 is expressed on astrocytes and signals
through NF-«B suggesting that the reduced neuropath-
ology in our IkBa-dn mice could be due to impaired
CXCR?7 expression and signaling in these mice.

Discussion

In a previous study, we showed that mice lacking func-
tional NF-«xB signaling in astrocytes (GFAP-IkBa-dn
transgenic mice) recover better following moderate
spinal cord contusion, with a significant improvement in
locomotor function that correlates with a smaller lesion
area and a larger area of white matter preservation com-
pared to injured WT LM [12]. Since the mice were gen-
erated several years ago, we confirmed that they still
retained the same phenotype following SCI and found
that the GFAP-Ikba-dn mice still did perform signifi-
cantly better than the WT mice on the Basso Mouse
Scale following moderate SCI, supported by a smaller
lesion size and more myelin 6 weeks post-SCIL. The lar-
ger white matter volume in the IkBa-dn transgenic mice
could be due to sparing of oligodendrocytes from cell
death and/or to an increase in oligodendrogenesis. In
the present paper, we demonstrate that there is indeed
an increase in oligodendrogenesis in the IkBa-dn trans-
genic mice compared to the WT LM 6 to 7 weeks post-
SCL In the naive mice we did not find any differences in
the number of oligodendrocytes or the amount of myelin
between WT and transgenic mice suggesting that
blocking NF-«B signaling in astrocytes under naive con-
ditions does not affect myelination. However, following
SCI we found a large increase in the number of newly
formed BrdU"/CC1" oligodendrocytes, suggesting that
astroglial NF-kB directly or indirectly affects the differ-
entiation of OPC into mature, myelinating oligodendro-
cytes. In fact, a recent study showed that reactive
astrocytes from the injured spinal cord can inhibit oligo-
dendrocyte differentiation in vitro [11]. Many others
have also shown that astrocytes can directly modulate
myelination in vitro via the release of a number of se-
creted factors, depending on culture conditions [7,10].
In our study, it is so far unknown whether the decreased
expression of a NF-kB-regulated gene has a direct effect
on oligodendrocyte maturation or an indirect effect
through other cells such as microglia and/or infiltrating
macrophages. Indeed, factors secreted by macrophages
from the injured spinal cord have been shown to inhibit
growth of NG2" cells in vitro [50]. When we examined
the distribution of the BrdU"/CC1" cells, we found nu-
merous double immunolabeled cells located around the
epicenter in the IkBa-dn transgenic mice compared to
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the WT LM mice, suggesting that while the lesion epi-
center in the WT mice is inhibitory for oligodendrocyte
differentiation, the epicenter environment in the trans-
genic mice is more permissive and may allow for a better
survival of newly generated oligodendrocytes. To gain
insight into the molecular mechanisms underlying in-
creased oligodendrogenesis, we performed a microarray
analysis on naive and injured spinal cords at 3 days, 3
and 6 weeks post-SCI and found the largest number of
differentially regulated genes between WT and GFAP-
IkBa-dn mice at the more chronic time point. Since
analysis of the set of genes pointed to differences in the
inflammatory response with upregulation of genes such
as CD11b, TLR4, CXCL12, and CXCR4 in IkBa-dn mice
compared to the WT mice, we sought to determine
whether differences in the number of microglia/leukocytes
could account for the observed differences. Even though
we did not find any differences in terms of total number
of CD11b" cells between WT and GFAP-IkBa-dn mice
6 weeks following SCI, we found differences in TLR4
levels, with the microglia/leukocytes from the transgenic
mice showing enhanced immunoreactivity compared to
the WT mice. Inflammatory reactions are important in
stimulating recruitment of OPCs to demyelinating areas
and in the remyelination process itself [34,51,52]. Re-
cently, diverse microglia/macrophage phenotypes have
been identified through their expression of specific sets of
genes, making them either neuroprotective and reparative
or toxic to the neural cells [20,33,35]. Our data suggest
that inhibiting astroglial NF-kB affects the activation
status of microglia/leukocytes rendering them more sup-
portive for remyelination. In fact the role of astrocytes in
modulating microglia has been highlighted in a study
where astrocytes from glioblastoma have been shown to
suppress microglial function [53]. It appears that the num-
ber of astrocytes may also be an important factor in the
regulation of microglial function. However, we did not
find any significant difference in the number of astrocytes
in the spinal cord from naive WT and IkBa-dn transgenic
mice (Additional file 1).

Chemokines are essential for trafficking of leukocytes
in both physiological and pathological conditions [54].
CXCL12, also known as stromal-derived growth factor 1
or SDF-1, can act through two G-coupled receptors,
CXCR4 and CXCR7. CXCL12 and its receptor CXCR4
play multiple roles both in the immune and nervous sys-
tems. CXCL12 is a highly efficacious chemoattractant
for lymphocytes and monocytes but not neutrophils
[44]. CXCR4 signaling is required for the migration of
neuronal precursors, axon guidance/pathfinding and
maintenance of neural progenitor cells. In the mature
CNS, CXCL12 modulates neurotransmission, neurotox-
icity and neuroglial interactions. It activates NF-kB,
stimulates the production of chemokines and cytokines
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and induces cell death in primary astrocytes [55]. CXCL12
stimulates neurite growth on inhibitory CNS myelin [40].
Regarding the role of CXCL12 in remyelination there are
some divergent results as whether it promotes oligo-
dendrocyte maturation through its receptor CXCR4 [56]
or CXCR?7 [57]. These apparent discrepancies may be due
to the injury paradigm being a drug-induced demye-
lination of the corpus callosum in the study by Gottle
and colleagues [57] and a myelin oligodendrocyte
glycoprotein-induced EAE model in the study by Patel
and colleagues [56]. In our chronically spinal cord in-
jured mouse model, we observed a strong induction
of CXCR4 on oligodendrocytes especially in IkBa-dn
mice compared to WT, which is in stark contrast
with the study from Gottle and colleagues [57] where
they did not observe any expression of CXCR4 on
oligodendroglial cells in both healthy and diseased
spinal cord. The pathophysiology of SCI and EAE is
very distinct, which could explain some of the differ-
ences observed in models of SCI and EAE. The pat-
tern of expression of CXCR4 appeared mostly nuclear
although we also found cytoplamic/membrane stain-
ing as well. Nuclear localization of CXCR4 has been
reported following binding to CXCL12 and its func-
tion in the nucleus is still speculative [58]. As in the
study by Patel and colleagues [56], we found CXCR4
expressed by some NG2* cells both in WT and IkBa-dn
mice. Due to the expression of CXCR4 on NG2" cells and
in oligodendrocytes, this would suggest a role in both
myelination and oligodendrocyte survival. Regarding
CXCR7, we observed an induction at 6 weeks in the
injured WT mice, but not in the IkBa-dn mice while
antagonism to CXCR7 has been reported to promote
oligodendrocyte maturation [57] and to prevent axonal
injury [46] in two different models of EAE.

TNEF is a cytokine that plays different roles depending
on the receptor it engages, being either TNFR1 or
TNER2. Originally viewed as a pro-inflammatory cyto-
kine, knockout studies have demonstrated that TNF
does not only have deleterious effects following CNS
trauma or disease [29,59], but is also involved in the re-
pair phase specifically through its cognate TNFR2 (p75)
receptor [47]. Recently, our laboratory has demon-
strated, using a specific inhibitor of soluble TNEF, that
signaling of membrane-bound TNF through its receptor
TNFR2 was associated with axonal preservation and
improved myelin compaction following EAE [48]. Fur-
thermore a recent study by Patel and colleagues showed
that TNFR2 was required for OPC proliferation and
differentiation in a drug-induced demyelination model
of the corpus callosum [60]. Therefore, we sought to
determine whether TNFR2 expression was altered fol-
lowing SCI. Our data showed that TNFR2 expression
was reduced 6 weeks following SCI in WT mice but
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was maintained at levels similar to the naive condi-
tions in our transgenic mice suggesting that signaling
through TNFR2 on oligodendrocytes may have a posi-
tive effect on myelination as seen in EAE.

The fact that in the present study we observed dra-
matic gene changes at the more chronic time point may
be explained by the biphasic infiltration of leukocytes in
mice following SCI with a late peak occurring in the
chronic phase 42 days after injury [61-63].

Conclusion

In conclusion, our data demonstrate that one of the
beneficial roles of blocking NF-kB in astrocytes is to
promote oligodendrogenesis through alteration of the
inflammatory environment at and around the lesion site.
In particular, our data suggest that astrocytes may be
modulating microglial/leukocyte activation towards a
phenotype that is supportive of oligodendrogenesis and
repair.

Additional file

Additional file 1: Inhibition of astroglial NF-kB does not affect the
number of astrocytes in the naive, murine adult spinal cord.

(A) Representative immunostained spinal cord cross sections from naive
wild-type (WT) and IkBa-dn transgenic (TG) mice. Astrocytes were
immunostained using a polyclonal rabbit anti-GFAP (DAKO, 1:1000) and
an Alexa594 anti-rabbit secondary antibody (Molecular Probe, 1:500).
Hoechst was used to label the nuclei. Scale bar: 100 um. (B) High
magnification of astrocytes in the white matter spinal cord of WT and
IkBa-dn TG mice. Scale bar: 20 pum. (C) Estimation of the number of
astrocytes in the white matter and grey matter of a 1-mm long spinal
cord segment in the thoracic region of naive WT and IkBa-dn mice using
unbiased stereology (grid size 120 um x 120 pm and probe size 40 pm x
40 um) showed no difference between genotypes (mean + SEM, N = 3
per group). (D) Glial fibrillary acidic protein (GFAP) gene expression level
in the spinal cord was assessed by real-time PCR. Data were normalized to
B-actin and expressed as percent of WT (mean + SEM, N = 5 per group).
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