2,053 research outputs found

    Hydrography and circulation west of Sardinia in June 2014

    Get PDF
    In the frame of the REP14-MED sea trial in June 2014, the hydrography and circulation west of Sardinia, observed by means of gliders, shipborne CTD (conductivity, temperature, depth) instruments, towed devices, and vessel-mounted ADCPs (acoustic doppler current profilers), are presented and compared with previous knowledge. So far, the circulation is not well-known in this area, and the hydrography is subject to long-term changes. Potential temperature, salinity, and potential density ranges as well as core values of the observed water masses were determined. Modified Atlantic Water (MAW), with potential density anomalies below 28.72 kg m−3, showed a salinity minimum of 37.93 at 50 dbar. Levantine Intermediate Water (LIW), with a salinity maximum of about 38.70 at 400 dbar, was observed within a range of 28.72<σΘ/(kg m−3) < 29.10. MAW and LIW showed slightly higher salinities than previous investigations. During the trial, LIW covered the whole area from the Sardinian shelf to 7°15′ E. Only north of 40° N was it tied to the continental slope. Within the MAW, a cold and saline anticyclonic eddy was observed in the southern trial area. The strongest variability in temperature and salinity appeared around this eddy, and in the southwestern part of the domain, where unusually low saline surface water entered the area towards the end of the experiment. An anticyclonic eddy of Winter Intermediate Water was recorded moving northward at 0.014 m s−1. Geostrophic currents and water mass transports calculated across zonal and meridional transects showed a good agreement with vessel-mounted ADCP measurements. Within the MAW, northward currents were observed over the shelf and offshore, while a southward transport of about 1.5 Sv occurred over the slope. A net northward transport of 0.38 Sv across the southern transect decreased to zero in the north. Within the LIW, northward transports of 0.6 Sv across the southern transects were mainly observed offshore, and decreased to 0.3 Sv in the north where they were primarily located over the slope. This presentation of the REP14-MED observations helps to further understand the long-term evolution of hydrography and circulation in the Western Mediterranean, where considerable changes occurred after the Eastern Mediterranean Transient and the Western Mediterranean Transition

    Residents\u27 Confidence Providing Primary Care With Behavioral Health Integration

    Get PDF
    BACKGROUND AND OBJECTIVES: Behavioral health integration (BHI) entails integrated behavioral health clinicians (IBHCs) providing care-generally for mental health and substance abuse disorders and behavioral comorbidity- within the operational functioning of primary care. Because limited data exist regarding BHI in residency, we studied its impact on resident education by examining whether increased behavioral health (BH) co-management improved residents\u27 perceived ability to treat BH conditions. METHODS: We included residents from internal and family medicine training programs using BHI in residents\u27 continuity clinics and assessed the level of co-management between primary care and IBHCs and the following domains: (1) confidence in managing BH conditions, (2) barriers to BH provision, (3) perception of autonomy when working with IBHCs, (4) satisfaction with the clinic, and (5) perceived educational value of BH learning modes. RESULTS: Altogether, 117 residents participated in our survey (73.1% response rate). Residents who had co-managed \u3e /= five patients alongside IBHCs reported significantly higher confidence than those who had co-managed andlt; five patients with BH conditions. The association remained significant after adjustment for residents\u27 level of training and specialty. In rating BH learning modes, residents rated most highly active collaboration with IBHCs and observation with feedback from clinic preceptors. CONCLUSIONS: BHI training within residency enhances perceived learning and confidence in providing BH care

    Gravity and Nonequilibrium Thermodynamics of Classical Matter

    Full text link
    Renewed interest in deriving gravity (more precisely, the Einstein equations) from thermodynamics considerations [1, 2] is stirred up by a recent proposal that 'gravity is an entropic force' [3] (see also [4]). Even though I find the arguments justifying such a claim in this latest proposal rather ad hoc and simplistic compared to the original one I would unreservedly support the call to explore deeper the relation between gravity and thermodynamics, this having the same spirit as my long-held view that general relativity is the hydrodynamic limit [5, 6] of some underlying theories for the microscopic structure of spacetime - all these proposals, together with that of [7, 8], attest to the emergent nature of gravity [9]. In this first paper of two we set the modest goal of studying the nonequilibrium thermodynamics of classical matter only, bringing afore some interesting prior results, without invoking any quantum considerations such as Bekenstein-Hawking entropy, holography or Unruh effect. This is for the sake of understanding the nonequilibrium nature of classical gravity which is at the root of many salient features of black hole physics. One important property of gravitational systems, from self-gravitating gas to black holes, is their negative heat capacity, which is the source of many out-of-the ordinary dynamical and thermodynamic features such as the non-existence in isolated systems of thermodynamically stable configurations, which actually provides the condition for gravitational stability. A related property is that, being systems with long range interaction, they are nonextensive and relax extremely slowly towards equilibrium. Here we explore how much of the known features of black hole thermodynamics can be derived from this classical nonequilibrium perspective. A sequel paper will address gravity and nonequilibrium thermodynamics of quantum fields [10].Comment: 25 pages essay. Invited Talk at Mariofest, March 2010, Rosario, Argentina. Festschrift to appear as an issue of IJMP

    On classical super-radiance in Kerr-Newman-anti-de Sitter black holes

    Get PDF
    We study in detail the modes of a classical scalar field on a Kerr-Newman-anti-de Sitter (KN-AdS) black hole. We construct sets of basis modes appropriate to the two possible boundary conditions (``reflective'' and ``transparent'') at time-like infinity, and consider whether super-radiance is possible. If we employ ``reflective'' boundary conditions, all modes are non-super-radiant. On the other hand, for ``transparent'' boundary conditions, the presence of super-radiance depends on our definition of positive frequency. For those KN-AdS black holes having a globally time-like Killing vector, the natural choice of positive frequency leads to no super-radiance. For other KN-AdS black holes, there is a choice of positive frequency which gives no super-radiance, but for other choices there will, in general, be super-radiance.Comment: 23 pages, 3 figures, v2: minor changes, references adde

    Alpha-Vacua, Black Holes, and AdS/CFT

    Full text link
    The Schwarzschild, Schwarzschild-AdS, and Schwarzschild-de Sitter solutions all admit freely acting discrete involutions which commute with the continuous symmetries of the spacetimes. Intuitively, these involutions correspond to the antipodal map of the corresponding spacetimes. In analogy with the ordinary de Sitter example, this allows us to construct new vacua by performing a Mottola-Allen transform on the modes associated with the Hartle-Hawking, or Euclidean, vacuum. These vacua are the `alpha'-vacua for these black holes. The causal structure of a typical black hole may ameliorate certain difficulties which are encountered in the case of de Sitter alpha-vacua. For Schwarzschild-AdS black holes, a Bogoliubov transformation which mixes operators of the two boundary CFT's provides a construction of the dual CFT alpha-states. Finally, we analyze the thermal properties of these vacua.Comment: 40 pages REVTeX and AMSLaTeX, 17 black&white eps figures. v3: references added. v4: details of the pinch singularity avoidance for the string quantization of the Rindler space toy model have been added in both the body of the paper and in a new 7 page appendix. Other clarifications and references added. This is the version accepted for publication in Class. Quant. Gra

    High-resolution observations in the western Mediterranean Sea: the REP14-MED experiment

    Get PDF
    The observational part of the REP14-MED experiment was conducted in June 2014 in the Sardo-Balearic Basin west of Sardinia (western Mediterranean Sea). Two research vessels collected high-resolution oceanographic data by means of hydrographic casts, towed systems, and underway measurements. In addition, a vast amount of data was provided by a fleet of 11 ocean gliders, time series were available from moored instruments, and information on Lagrangian flow patterns was obtained from surface drifters and one profiling float. The spatial resolution of the observations encompasses a spectrum over 4 orders of magnitude from (10<sup>1</sup> m) to (10<sup>5</sup> m), and the time series from the moored instruments cover a spectral range of 5 orders from (10<sup>1</sup> s) to (10<sup>6</sup> s). The objective of this article is to provide an overview of the huge data set which has been utilised by various studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads for gliders

    Exact Solutions for Domain Walls in Coupled Complex Ginzburg - Landau Equations

    Full text link
    The complex Ginzburg Landau equation (CGLE) is a ubiquitous model for the evolution of slowly varying wave packets in nonlinear dissipative media. A front (shock) is a transient layer between a plane-wave state and a zero background. We report exact solutions for domain walls, i.e., pairs of fronts with opposite polarities, in a system of two coupled CGLEs, which describe transient layers between semi-infinite domains occupied by each component in the absence of the other one. For this purpose, a modified Hirota bilinear operator, first proposed by Bekki and Nozaki, is employed. A novel factorization procedure is applied to reduce the intermediate calculations considerably. The ensuing system of equations for the amplitudes and frequencies is solved by means of computer-assisted algebra. Exact solutions for mutually-locked front pairs of opposite polarities, with one or several free parameters, are thus generated. The signs of the cubic gain/loss, linear amplification/attenuation, and velocity of the coupled-front complex can be adjusted in a variety of configurations. Numerical simulations are performed to study the stability properties of such fronts.Comment: Journal of the Physical Society of Japan, in pres

    Quantum corrections and black hole spectroscopy

    Full text link
    In the work \cite{BRM,RBE}, black hole spectroscopy has been successfully reproduced in the tunneling picture. As a result, the derived entropy spectrum of black hole in different gravity (including Einstein's gravity, Einstein-Gauss-Bonnet gravity and Ho\v{r}ava-Lifshitz gravity) are all evenly spaced, sharing the same forms as Sn=nS_n=n, where physical process is only confined in the semiclassical framework. However, the real physical picture should go beyond the semiclassical approximation. In this case, the physical quantities would undergo higher-order quantum corrections, whose effect on different gravity shares in different forms. Motivated by these facts, in this paper we aim to observe how quantum corrections affect black hole spectroscopy in different gravity. The result shows that, in the presence of higher-order quantum corrections, black hole spectroscopy in different gravity still shares the same form as Sn=nS_n=n, further confirming the entropy quantum is universal in the sense that it is not only independent of black hole parameters, but also independent of higher-order quantum corrections. This is a desiring result for the forthcoming quantum gravity theory.Comment: 14 pages, no figure, use JHEP3.cls. to be published in JHE
    corecore