9,637 research outputs found

    Relativistic Tunneling Through Two Successive Barriers

    Full text link
    We study the relativistic quantum mechanical problem of a Dirac particle tunneling through two successive electrostatic barriers. Our aim is to study the emergence of the so-called \emph{Generalized Hartman Effect}, an effect observed in the context of nonrelativistic tunneling as well as in its electromagnetic counterparts, and which is often associated with the possibility of superluminal velocities in the tunneling process. We discuss the behavior of both the phase (or group) tunneling time and the dwell time, and show that in the limit of opaque barriers the relativistic theory also allows the emergence of the Generalized Hartman Effect. We compare our results with the nonrelativistic ones and discuss their interpretation.Comment: 7 pages, 3 figures. Revised version, with a new appendix added. Slightly changes in the styles and captions of Figures 1 and 2. To appear in Physical Review

    Flexibility and security over the life course

    Get PDF

    Implications of miRNA expression pattern in bovine oocytes and follicular fluids for developmental competence

    Get PDF
    Developmental competence determines the oocyte capacity to support initial embryo growth, but the molecular mechanisms underlying this phenomenon are still ill-defined. Changes in microRNA (miRNA) expression pattern have been described during follicular growth in several species. Therefore, aim of this study was to investigate whether miRNA expression pattern in cow oocyte and follicular fluid (FF) is associated with the acquisition of developmental competence. Samples were collected from ovaries with more than, or fewer than, 10 mid-antral follicles (H- and L-ovaries) because previous studies demonstrated that this parameter is a reliable predictor of oocyte competence. After miRNA deep sequencing and bioinformatic data analysis, we identified 58 miRNAs in FF and 6 in the oocyte that were differentially expressed between H- and L-ovaries. Overall, our results indicate that miRNA levels both in FF and in the ooplasm must remain within specific thresholds and that changes in either direction compromising oocyte competence. Some of the miRNAs found in FF (miR-769, miR-1343, miR-450a, miR-204, miR-1271 and miR-451) where already known to regulate follicle growth and their expression pattern indicate that they are also involved in the acquisition of developmental competence. Some miRNAs were differentially expressed in both compartments but with opposite patterns, suggesting that miRNAs do not flow freely between FF and oocyte. Gene Ontology analysis showed that the predicted gene targets of most differentially expressed miRNAs are part of a few signalling pathways. Regulation of maternal mRNA storage and mitochondrial activity seem to be the processes more functionally relevant in determining oocyte quality. In conclusion, our data identified a few miRNAs in the follicular fluid and in the ooplasm that modulate the oocyte developmental competence. This provides new insights that could help with the management of cattle reproductive efficiency

    High-throughput multimodal wide-field Fourier-transform Raman microscope

    Get PDF
    Raman microscopy is a powerful analytical technique for materials and life sciences that enables mapping the spatial distribution of the chemical composition of a sample. State-of-the-art Raman microscopes, based on point-scanning frequency-domain detection, have long (∼1 s) pixel dwell times, making it challenging to acquire images of a significant area (e.g., 100×100 μm). Here we present a compact wide-field Raman microscope based on a time-domain Fourier-transform approach, which enables parallel acquisition of the Raman spectra on all pixels of a 2D detector. A common-path birefringent interferometer with exceptional delay stability and reproducibility can rapidly acquire Raman maps (∼30 min for a 250 000 pixel image) with high spatial (<1 μm) and spectral (∼23 cm-1) resolutions. Time-domain detection allows us to disentangle fluorescence and Raman signals, which can both be measured separately. We validate the system by Raman imaging plastic microbeads and demonstrate its multimodal operation by capturing fluorescence and Raman maps of a multilayer-WSe2 sample, providing complementary information on the strain and number of layers of the material

    Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures

    Get PDF
    Sharp metallic nanotapers irradiated with few-cycle laser pulses are emerging as a source of highly confined coherent electron wavepackets with attosecond duration and strong directivity. The possibility to steer, control or switch such electron wavepackets by light is expected to pave the way towards direct visualization of nanoplasmonic field dynamics and real-time probing of electron motion in solid state nanostructures. Such pulses can be generated by strong-field induced tunneling and acceleration of electrons in the near-field of sharp gold tapers within one half-cycle of the driving laser field. Here, we show the effect of the carrier-envelope phase of the laser field on the generation and motion of strong-field emitted electrons from such tips. This is a step forward towards controlling the coherent electron motion in and around metallic nanostructures on ultrashort length and time scales

    The perseverance of Pacioli's goods inventory accounting system

    Get PDF
    This paper details sources of the 'undoubtedly strange' (Yamey, 1994a, p.119) system of goods inventory records described in Pacioli’s 1494 bookkeeping treatise and traces the longevity and widespread use of this early perpetual inventory recording (EPIR) system in English language texts. By doing so and contrasting this system with the bookkeeping treatment of modern texts, it is shown that the EPIR system persisted as the dominant form of goods inventory accounting for between 400 and 500 years and that the reasons for its demise are worthy of further consideration and research

    Corrigendum: Computational Methods for Resting-State EEG of Patients With Disorders of Consciousness

    Get PDF
    An author name was incorrectly spelled as \u201cUrszulaMarkowska-Kacznar.\u201d The correct spelling is \u201cUrszulaMarkowska-Kaczmar.\u201d The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated
    • …
    corecore