259 research outputs found

    Effects of quantized fields on the spacetime geometries of static spherically symmetric black holes

    Full text link
    Analytic approximations for the stress-energy of quantized fields in the Hartle-Hawking state in static black hole spacetimes predict divergences on the event horizon of the black hole for a number of important cases. Such divergences, if real, could substantially alter the spacetime geometry near the event horizon, possibly preventing the black hole from existing. The results of three investigations of these types of effects are presented. The first involves a new analytic approximation for conformally invariant fields in Reissner-Nordstrom spacetimes which is finite on the horizon. The second focuses on the stress-energy of massless scalar fields in Schwarzschild-de Sitter black holes. The third focuses on the stress-energy of massless scalar fields in zero temperature black hole geometries that could be solutions to the semiclassical backreaction equations near the event horizon of the black hole.Comment: 5 pages. To appear in the "Proceedings of the Eleventh Marcel Grossmann Meeting on General Relativity", July 2006, Berlin, German

    Stress Tensor from the Trace Anomaly in Reissner-Nordstrom Spacetimes

    Full text link
    The effective action associated with the trace anomaly provides a general algorithm for approximating the expectation value of the stress tensor of conformal matter fields in arbitrary curved spacetimes. In static, spherically symmetric spacetimes, the algorithm involves solving a fourth order linear differential equation in the radial coordinate r for the two scalar auxiliary fields appearing in the anomaly action, and its corresponding stress tensor. By appropriate choice of the homogeneous solutions of the auxiliary field equations, we show that it is possible to obtain finite stress tensors on all Reissner-Nordstrom event horizons, including the extreme Q=M case. We compare these finite results to previous analytic approximation methods, which yield invariably an infinite stress-energy on charged black hole horizons, as well as with detailed numerical calculations that indicate the contrary. The approximation scheme based on the auxiliary field effective action reproduces all physically allowed behaviors of the quantum stress tensor, in a variety of quantum states, for fields of any spin, in the vicinity of the entire family (0 le Q le M) of RN horizons.Comment: 43 pages, 12 figure

    Detecting transient gravitational waves in non-Gaussian noise with partially redundant analysis methods

    Get PDF
    There is a broad class of astrophysical sources that produce detectable, transient, gravitational waves. Some searches for transient gravitational waves are tailored to known features of these sources. Other searches make few assumptions about the sources. Typically events are observable with multiple search techniques. This work describes how to combine the results of searches that are not independent, treating each search as a classifier for a given event. This will be shown to improve the overall sensitivity to gravitational-wave events while directly addressing the problem of consistent interpretation of multiple trials.Comment: 11 pages, 5 figure

    Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background

    Get PDF
    We describe a general approach to detection of transient gravitational-wave signals in the presence of non-Gaussian background noise. We prove that under quite general conditions, the ratio of the likelihood of observed data to contain a signal to the likelihood of it being a noise fluctuation provides optimal ranking for the candidate events found in an experiment. The likelihood-ratio ranking allows us to combine different kinds of data into a single analysis. We apply the general framework to the problem of unifying the results of independent experiments and the problem of accounting for non-Gaussian artifacts in the searches for gravitational waves from compact binary coalescence in LIGO data. We show analytically and confirm through simulations that in both cases the likelihood ratio statistic results in an improved analysis.Comment: 10 pages, 6 figure

    Status of NINJA: the Numerical INJection Analysis project

    Get PDF
    The 2008 NRDA conference introduced the Numerical INJection Analysis project (NINJA), a new collaborative effort between the numerical relativity community and the data analysis community. NINJA focuses on modeling and searching for gravitational wave signatures from the coalescence of binary system of compact objects. We review the scope of this collaboration and the components of the first NINJA project, where numerical relativity groups shared waveforms and data analysis teams applied various techniques to detect them when embedded in colored Gaussian noise

    Search for Gravitational Wave Bursts from Soft Gamma Repeaters

    Get PDF
    We present the results of a LIGO search for short-duration gravitational waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first search sensitive to neutron star f-modes, usually considered the most efficient GW emitting modes. We find no evidence of GWs associated with any SGR burst in a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190 lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first year of LIGO's fifth science run. GW strain upper limits and model-dependent GW emission energy upper limits are estimated for individual bursts using a variety of simulated waveforms. The unprecedented sensitivity of the detectors allows us to set the most stringent limits on transient GW amplitudes published to date. We find upper limit estimates on the model-dependent isotropic GW emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52 erg depending on waveform type, detector antenna factors and noise characteristics at the time of the burst. These upper limits are within the theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur

    First LIGO search for gravitational wave bursts from cosmic (super)strings

    Get PDF
    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR

    All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data

    Get PDF
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50--1100 Hz and with the frequency's time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semi-coherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 1.E-24 are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 1.0E-6, the search is sensitive to distances as great as 500 pc--a range that could encompass many undiscovered neutron stars, albeit only a tiny fraction of which would likely be rotating fast enough to be accessible to LIGO. This ellipticity is at the upper range thought to be sustainable by conventional neutron stars and well below the maximum sustainable by a strange quark star.Comment: 6 pages, 1 figur

    Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects

    Get PDF
    In gravitational-wave detection, special emphasis is put onto searches that focus on cosmic events detected by other types of astrophysical observatories. The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical telescopes and neutrino observatories, provide a trigger time for analyzing gravitational wave data coincident with the event. In certain cases the expected frequency range, source energetics, directional and progenitor information is also available. Beyond allowing the recognition of gravitational waveforms with amplitudes closer to the noise floor of the detector, these triggered searches should also lead to rich science results even before the onset of Advanced LIGO. In this paper we provide a broad review of LIGO's astrophysically triggered searches and the sources they target
    • …
    corecore