2,568 research outputs found
Possibility of Measuring Azimuthal Anisotropy in Absorption in the ALICE Experiment
The absorption of J/ψ by comovers in the forward rapidity region is predicted to be azimuthally anisotropic as compared to an isotropic Glauber absorption. In the framework of a fast simulation we investigate the possibility of measuring this anisotropy within the ALICE experiment for the J/ψ 's detected in the Di-Muon Spectrometer using the event plane provided by the Photon Multiplicity Detector(PMD). The effect of limitations in the event plane determination on measured J/ψ anisotropy is also investigated
Heuristic algorithms for the min-max edge 2-coloring problem
In multi-channel Wireless Mesh Networks (WMN), each node is able to use
multiple non-overlapping frequency channels. Raniwala et al. (MC2R 2004,
INFOCOM 2005) propose and study several such architectures in which a computer
can have multiple network interface cards. These architectures are modeled as a
graph problem named \emph{maximum edge -coloring} and studied in several
papers by Feng et. al (TAMC 2007), Adamaszek and Popa (ISAAC 2010, JDA 2016).
Later on Larjomaa and Popa (IWOCA 2014, JGAA 2015) define and study an
alternative variant, named the \emph{min-max edge -coloring}.
The above mentioned graph problems, namely the maximum edge -coloring and
the min-max edge -coloring are studied mainly from the theoretical
perspective. In this paper, we study the min-max edge 2-coloring problem from a
practical perspective. More precisely, we introduce, implement and test four
heuristic approximation algorithms for the min-max edge -coloring problem.
These algorithms are based on a \emph{Breadth First Search} (BFS)-based
heuristic and on \emph{local search} methods like basic \emph{hill climbing},
\emph{simulated annealing} and \emph{tabu search} techniques, respectively.
Although several algorithms for particular graph classes were proposed by
Larjomaa and Popa (e.g., trees, planar graphs, cliques, bi-cliques,
hypergraphs), we design the first algorithms for general graphs.
We study and compare the running data for all algorithms on Unit Disk Graphs,
as well as some graphs from the DIMACS vertex coloring benchmark dataset.Comment: This is a post-peer-review, pre-copyedit version of an article
published in International Computing and Combinatorics Conference
(COCOON'18). The final authenticated version is available online at:
http://www.doi.org/10.1007/978-3-319-94776-1_5
Effect of Finite Granularity of Detectors on Anisotropy Coefficients
The coefficients that describe the anisotropy in the azimuthal distribution
of particles are lower when the particles are recorded in a detector with
finite granularity and measures only hits. This arises due to loss of
information because of multiple hits in any channel. The magnitude of this loss
of signal depends both on the occupancy and on the value of the coefficient.
These correction factors are obtained for analysis methods differing in detail,
and are found to be different.Comment: 11 pages including 2 figure
The STAR Photon Multiplicity Detector
Details concerning the design, fabrication and performance of STAR Photon
Multiplicity Detector (PMD) are presented. The PMD will cover the forward
region, within the pseudorapidity range 2.3--3.5, behind the forward time
projection chamber. It will measure the spatial distribution of photons in
order to study collective flow, fluctuation and chiral symmetry restoration.Comment: 15 pages, including 11 figures; to appear in a special NIM volume
dedicated to the accelerator and detectors at RHI
A Honeycomb Proportional Counter for Photon Multiplicity Measurement in the ALICE Experiment
A honeycomb detector consisting of a matrix of 96 closely packed hexagonal
cells, each working as a proportional counter with a wire readout, was
fabricated and tested at the CERN PS. The cell depth and the radial dimensions
of the cell were small, in the range of 5-10 mm. The appropriate cell design
was arrived at using GARFIELD simulations. Two geometries are described
illustrating the effect of field shaping. The charged particle detection
efficiency and the preshower characteristics have been studied using pion and
electron beams. Average charged particle detection efficiency was found to be
98%, which is almost uniform within the cell volume and also within the array.
The preshower data show that the transverse size of the shower is in close
agreement with the results of simulations for a range of energies and converter
thicknesses.Comment: To be published in NIM
Optically-Heralded Entanglement of Superconducting Systems in Quantum Networks
Networking superconducting quantum computers is a longstanding challenge in
quantum science. The typical approach has been to cascade transducers:
converting to optical frequencies at the transmitter and to microwave
frequencies at the receiver. However, the small microwave-optical coupling and
added noise have proven formidable obstacles. Instead, we propose optical
networking via heralding end-to-end entanglement with one detected photon and
teleportation. In contrast to cascaded direct transduction, our scheme absorbs
the low optical-microwave coupling efficiency into the heralding step, thus
breaking the rate-fidelity trade-off. Moreover, this technique unifies and
simplifies entanglement generation between superconducting devices and other
physical modalities in quantum networks
Scalable photonic integrated circuits for programmable control of atomic systems
Advances in laser technology have driven discoveries in atomic, molecular,
and optical (AMO) physics and emerging applications, from quantum computers
with cold atoms or ions, to quantum networks with solid-state color centers.
This progress is motivating the development of a new generation of
"programmable optical control" systems, characterized by criteria (C1) visible
(VIS) and near-infrared (IR) wavelength operation, (C2) large channel counts
extensible beyond 1000s of individually addressable atoms, (C3) high intensity
modulation extinction and (C4) repeatability compatible with low gate errors,
and (C5) fast switching times. Here, we address these challenges by introducing
an atom control architecture based on VIS-IR photonic integrated circuit (PIC)
technology. Based on a complementary metal-oxide-semiconductor (CMOS)
fabrication process, this Atom-control PIC (APIC) technology meets the system
requirements (C1)-(C5). As a proof of concept, we demonstrate a 16-channel
silicon nitride based APIC with (5.80.4) ns response times and -30 dB
extinction ratio at a wavelength of 780 nm. This work demonstrates the
suitability of PIC technology for quantum control, opening a path towards
scalable quantum information processing based on optically-programmable atomic
systems
Particle density fluctuations
Event-by-event fluctuations in the multiplicities of charged particles and
photons at SPS energies are discussed. Fluctuations are studied by controlling
the centrality of the reaction and rapidity acceptance of the detectors.
Results are also presented on the event-by-event study of correlations between
the multiplicity of charged particles and photons to search for DCC-like
signals.Comment: Talk presented at Quark Matter 2002, Nantes, Franc
Interferometry of Direct Photons in Central 280Pb+208Pb Collisions at 158A GeV
Two-particle correlations of direct photons were measured in central
208Pb+208Pb collisions at 158 AGeV. The invariant interferometric radii were
extracted for 100<K_T<300 MeV/c and compared to radii extracted from charged
pion correlations. The yield of soft direct photons, K_T<300 MeV/c, was
extracted from the correlation strength and compared to theoretical
calculations.Comment: 5 pages, 4 figure
- …