136 research outputs found

    Woodland caribou persistence and extirpation in relic populations on Lake Superior

    Get PDF
    Extended: The hypothesis was proposed that woodland caribou (Rangifer tarandus caribou) in North America had declined due to wolf predation and over-hunting rather than from a shortage of winter lichens (Bergerud, 1974). In 1974, two study areas were selected for testing: for the lichen hypothesis, we selected the Slate Islands in Lake Superior (36 km2), a closed canopy forest without terrestrial lichens, wolves, bears, or moose; for the predation hypothesis, we selected the nearby Pukaskwa National Park (PNP) where terrestrial lichens, wolves, bears, and moose were present. Both areas were monitored from 1974 to 2003 (30 years). The living and dead caribou on the Slates were estimated by the ‘King census’ strip transect (mean length 108±9.3 km, extremes 22-190, total 3026 km) and the Lincoln Index (mean tagged 45±3.6, extremes 15-78). The mean annual population on the Slate Islands based on the strip transects was 262±22 animals (extremes 104-606), or 7.3/km2 (29 years) and from the Lincoln Index 303±64 (extremes 181-482), or 8.4/km2 (23 years). These are the highest densities in North America and have persisted at least since 1949 (56 years). Mountain maple (Acer spicatum) interacted with caribou density creating a record in its age structure which corroborates persistence at relatively high density from c. 1930. The mean percentage of calves was 14.8±0.34% (20 years) in the fall and 14.1±1.95% (19 years) in late winter. The Slate Islands herd was regulated by the density dependent abundance of summer green foods and fall physical condition rather than density independent arboreal lichen availability and snow depths. Two wolves (1 wolf/150 caribou) crossed to the islands in 1993-94 and reduced two calf cohorts (3 and 4.9 per cent calves) while female adult survival declined from a mean of 82% to 71% and the population declined ≈100 animals. In PNP, caribou/moose/wolf populations were estimated by aerial surveys (in some years assisted by telemetry). The caribou population estimates ranged from 31 in 1979 to 9 in 2003 (Y=1267 - 0.628X, r=-0.783, n=21, P<0.01) and extirpation is forecast in 2018. Animals lived within 3 km of Lake Superior (Bergerud, 1985) with an original density of 0.06/km2, similar to many other woodland herds coexisting with wolves (Bergerud, 1992), and 100 times less than the density found on the Slate Islands. The mean moose population was 0.25±0.016/km2 and the wolf population averaged 8.5±0.65/1000 km2. Late winter calf percentages in PNP averaged 16.2±1.89 (25 years); the population was gradually reduced by winter wolf predation (Bergerud, 1989; 1996). The refuge habitat available is apparently insufficient for persistence in an area where the continuous distribution of woodland caribou is fragmented due to moose exceeding 0.10/km2 and thereby supporting wolf densities ≥6.5/1000 km2. A second experimental study was to introduce Slate Island caribou to areas with and without wolves. A release to Bowman Island, where wolves and moose were present, failed due to predation. Bowman Island is adjacent to St. Ignace Island where caribou had persisted into the late 1940s. A second release in 1989 to the mainland in Lake Superior Provincial Park of 39 animals has persisted (<10 animals) because the animals utilize off-shore islands but numbers are also declining. A third release to Montréal Island in 1984 doubled in numbers (up to 20 animals) until Lake Superior froze in 1994 and wolves reached the island. A fourth release was to Michipicoten Island (188 km2) in 1982 where wolves were absent and few lichens were available. This herd increased at λ= 1.18 (8 to ±200, 160 seen 2001) in 19 years. This was the island envisioned for the crucial test of the lichen/predation hypotheses (Bergerud, 1974: p.769). These studies strongly support the idea that ecosystems without predators are limited bottom–up by food and those with wolves top-down by predation; however the proposed crucial test which has been initiated on Michipicoten Island remains to be completed and there is a limited window of opportunity for unequivocal results

    Does Removing Coyotes for Livestock Protection Benefit Free-Ranging Ungulates?

    Get PDF
    We studied the effects of coyote (Canis latrans) control for livestock protection on native ungulates during 2003 and 2004 on 7 sites in Utah and Colorado, USA, totaling over 1,900 km2. We found no relationships between coyote control variables and offspring/female deer ratios. However, control effort (no. of hr spent aerial gunning for coyotes) and success (no. of coyotes taken) were positively correlated with numbers of mule deer (Odocoileus hemionus) and pronghorn (Antilocapra americana) observed per kilometer of transect. Our results suggest that coyote control for livestock protection may increase densities of mule deer and pronghorn in areas where it is conducted

    Uniting statistical and individual-based approaches for animal movement modelling

    Get PDF
    <div><p>The dynamic nature of their internal states and the environment directly shape animals' spatial behaviours and give rise to emergent properties at broader scales in natural systems. However, integrating these dynamic features into habitat selection studies remains challenging, due to practically impossible field work to access internal states and the inability of current statistical models to produce dynamic outputs. To address these issues, we developed a robust method, which combines statistical and individual-based modelling. Using a statistical technique for forward modelling of the IBM has the advantage of being faster for parameterization than a pure inverse modelling technique and allows for robust selection of parameters. Using GPS locations from caribou monitored in Québec, caribou movements were modelled based on generative mechanisms accounting for dynamic variables at a low level of emergence. These variables were accessed by replicating real individuals' movements in parallel sub-models, and movement parameters were then empirically parameterized using Step Selection Functions. The final IBM model was validated using both k-fold cross-validation and emergent patterns validation and was tested for two different scenarios, with varying hardwood encroachment. Our results highlighted a functional response in habitat selection, which suggests that our method was able to capture the complexity of the natural system, and adequately provided projections on future possible states of the system in response to different management plans. This is especially relevant for testing the long-term impact of scenarios corresponding to environmental configurations that have yet to be observed in real systems.</p></div

    Woodland caribou persistence and extirpation in relic populations on Lake Superior

    Get PDF
    Extended: The hypothesis was proposed that woodland caribou (Rangifer tarandus caribou) in North America had declined due to wolf predation and over-hunting rather than from a shortage of winter lichens (Bergerud, 1974). In 1974, two study areas were selected for testing: for the lichen hypothesis, we selected the Slate Islands in Lake Superior (36 km2), a closed canopy forest without terrestrial lichens, wolves, bears, or moose; for the predation hypothesis, we selected the nearby Pukaskwa National Park (PNP) where terrestrial lichens, wolves, bears, and moose were present. Both areas were monitored from 1974 to 2003 (30 years). The living and dead caribou on the Slates were estimated by the ‘King census’ strip transect (mean length 108±9.3 km, extremes 22-190, total 3026 km) and the Lincoln Index (mean tagged 45±3.6, extremes 15-78). The mean annual population on the Slate Islands based on the strip transects was 262±22 animals (extremes 104-606), or 7.3/km2 (29 years) and from the Lincoln Index 303±64 (extremes 181-482), or 8.4/km2 (23 years). These are the highest densities in North America and have persisted at least since 1949 (56 years). Mountain maple (Acer spicatum) interacted with caribou density creating a record in its age structure which corroborates persistence at relatively high density from c. 1930. The mean percentage of calves was 14.8±0.34% (20 years) in the fall and 14.1±1.95% (19 years) in late winter. The Slate Islands herd was regulated by the density dependent abundance of summer green foods and fall physical condition rather than density independent arboreal lichen availability and snow depths. Two wolves (1 wolf/150 caribou) crossed to the islands in 1993-94 and reduced two calf cohorts (3 and 4.9 per cent calves) while female adult survival declined from a mean of 82% to 71% and the population declined ≈100 animals. In PNP, caribou/moose/wolf populations were estimated by aerial surveys (in some years assisted by telemetry). The caribou population estimates ranged from 31 in 1979 to 9 in 2003 (Y=1267 - 0.628X, r=-0.783, n=21, P<0.01) and extirpation is forecast in 2018. Animals lived within 3 km of Lake Superior (Bergerud, 1985) with an original density of 0.06/km2, similar to many other woodland herds coexisting with wolves (Bergerud, 1992), and 100 times less than the density found on the Slate Islands. The mean moose population was 0.25±0.016/km2 and the wolf population averaged 8.5±0.65/1000 km2. Late winter calf percentages in PNP averaged 16.2±1.89 (25 years); the population was gradually reduced by winter wolf predation (Bergerud, 1989; 1996). The refuge habitat available is apparently insufficient for persistence in an area where the continuous distribution of woodland caribou is fragmented due to moose exceeding 0.10/km2 and thereby supporting wolf densities ≥6.5/1000 km2. A second experimental study was to introduce Slate Island caribou to areas with and without wolves. A release to Bowman Island, where wolves and moose were present, failed due to predation. Bowman Island is adjacent to St. Ignace Island where caribou had persisted into the late 1940s. A second release in 1989 to the mainland in Lake Superior Provincial Park of 39 animals has persisted (<10 animals) because the animals utilize off-shore islands but numbers are also declining. A third release to Montréal Island in 1984 doubled in numbers (up to 20 animals) until Lake Superior froze in 1994 and wolves reached the island. A fourth release was to Michipicoten Island (188 km2) in 1982 where wolves were absent and few lichens were available. This herd increased at λ= 1.18 (8 to ±200, 160 seen 2001) in 19 years. This was the island envisioned for the crucial test of the lichen/predation hypotheses (Bergerud, 1974: p.769). These studies strongly support the idea that ecosystems without predators are limited bottom–up by food and those with wolves top-down by predation; however the proposed crucial test which has been initiated on Michipicoten Island remains to be completed and there is a limited window of opportunity for unequivocal results
    • …
    corecore