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Abstract

The dynamic nature of their internal states and the environment directly shape animals’ spatial behaviours and give rise to
emergent properties at broader scales in natural systems. However, integrating these dynamic features into habitat
selection studies remains challenging, due to practically impossible field work to access internal states and the inability of
current statistical models to produce dynamic outputs. To address these issues, we developed a robust method, which
combines statistical and individual-based modelling. Using a statistical technique for forward modelling of the IBM has the
advantage of being faster for parameterization than a pure inverse modelling technique and allows for robust selection of
parameters. Using GPS locations from caribou monitored in Québec, caribou movements were modelled based on
generative mechanisms accounting for dynamic variables at a low level of emergence. These variables were accessed by
replicating real individuals’ movements in parallel sub-models, and movement parameters were then empirically
parameterized using Step Selection Functions. The final IBM model was validated using both k-fold cross-validation and
emergent patterns validation and was tested for two different scenarios, with varying hardwood encroachment. Our results
highlighted a functional response in habitat selection, which suggests that our method was able to capture the complexity
of the natural system, and adequately provided projections on future possible states of the system in response to different
management plans. This is especially relevant for testing the long-term impact of scenarios corresponding to environmental
configurations that have yet to be observed in real systems.
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Introduction

Predictive models of animal distribution are central to many

fields of theoretical and applied ecology, and wildlife conservation

and management strongly rely on such models, e.g., [1–4]. Most

models of animal distribution, or of the underlying mechanisms

such as habitat selection and movements, are based on the

response of individuals to habitat features. These features can be

resources and modifying covariates [5], such as food or water

availability, land cover types, slope, elevation, snow, and predation

risk [6–8], which can further interact between each other (such as

food quality and abundance [9]). However, the response of

animals to particular habitat attributes may be affected by other

dynamic factors over time. For example plant selection by

herbivores can be altered by variations in group size and

predation risk [10]. Working memory is such that the accuracy

of the perception of visited high quality patches may vary over

time [11,12]. Lastly, the internal state of the animals, such as

stored energy and gut fill, can also influence herbivores’ grazing

strategies [13]. Internal states have also been shown to be an

essential component of animal’s movements, along with motion

capacity and navigation capacity [14].

The dynamic nature of internal states and habitat features, and

its importance to explain animal’s behaviour, is therefore broadly

recognized [15]. Moreover, statistical techniques have the ability

to take internal state variables into account. For example, internal

state variables can be used as interaction terms with other external

variables in Step Selection Functions (SSF) [16]. However, internal

states have been accounted for in only a small proportion of

habitat selection studies, e.g., [17–20]. Indeed, they remain hardly

usable to create predictive models using statistical techniques, for

two reasons. First, whereas remote sensing and GPS technology

provide a detailed assessment of habitat features and animal

movement, keeping track of the internal state of the animal or its

environment remains a challenge, because it would require costly

or unpractical field work. Second, statistical models of habitat

selection used for predicting the spatial distribution of animals

generally produce static outputs which cannot represent the

emergent properties of the natural system created by the dynamic

nature of these variables.

Individual-based models (IBM – also called agent-based models,

ABM) represent an alternative to statistical modelling as predictive

models, and can easily integrate individuals’ internal states in their

implementation, e.g., [21]. IBMs are modelling tools that represent
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distinct entities, such as individual animals, at relatively small

spatial and temporal scales with respect to the studied system, and

allow for the emergence of phenomena at broader scales and

higher hierarchical levels (e.g. at the population level [22]). In the

semantic of IBMs, internal states are related to generative

mechanisms, which are defined as ‘‘the internal organization

and processes that generate the system’s responses’’ [4]. By using

generative mechanisms as traits (or rules) governing the individ-

uals’ behaviours in the model, the resulting IBM can be valid for a

large domain of applicability and account for plasticity in the

individuals’ behaviours. Modelling the generative mechanisms

governing an individual’s behaviour at the lowest level of

emergence produces a model that can be used to predict how

individuals might respond to changes in their environment, as well

as any emergent patterns at higher levels of organization [23], and

such IBMs are therefore useful tools for predicting the impacts of

management plans on the dynamics of natural systems.

A common practice to parameterize generative mechanisms

involves the iterative adjustment of IBM parameters so that the

output of the model reproduces some patterns observed in the real

system, i.e. an inverse modelling technique. However, although

some frameworks, such as Pattern-oriented modelling (POM)

[22,24,25], have been developed to perform inverse modelling

while avoiding over-complex models, they require that the number

of patterns is not disproportionately low with respect to the

number of parameters to inversely estimate [23]. They also require

extensive simulation runs to refine the parameters, which may be

impractical for long simulations. On the other hand, forward

modelling consists in assessing the trait’s parameters directly from

the available data without relying on the IBM’s outputs, using, for

example, statistical techniques. Forward modelling therefore

allows to assess any number of parameters with an accuracy

independent from the number of patterns. The IBM’s outputs can

then be used for validation, without also serving for model

calibration, thus increasing the robustness of the model. While

forward modelling is preferable to inverse modelling when

practical, it faces the same limitations as statistical modelling with

respect to keeping track of internal variables, which are usually

overcome using inverse modelling.

In this study, we show how a combination of rigorous statistical

modelling with individual-based methods allows to overcome their

respective limitations and we apply these methods to predict how

changing patterns of heterogeneity on a landscape affect the

spatial repartition of animals across multiple spatiotemporal scales.

To this end, we designed an IBM of woodland caribou (Rangifer

tarandus caribou, L.) movements in managed boreal forest in

Québec. Woodland caribou populations are declining in most of

Canada, and this species is now considered as threatened in the

Canadian boreal forest [26]. Anthropogenic activities are most

likely the main cause of this situation, as evidence shows a strong

correlation between the northward advancement of the forest

harvesting front, and the southern limit of woodland caribou

occupancy [27].

We used the framework of levels of emergence [23] to identify

generative mechanisms allowing for the model to be valid for

different configurations of the landscape. We related the gener-

ative mechanisms to energetic requirements, spatial memory, and

habitat characteristics, to represent the trade-offs between costs

and benefits of moving, and modelled accordingly the movement

of caribou monitored by GPS telemetry based on a Step Selection

Function calibrated by forward modelling. To keep track of

internal state variables for parameterizing the SSF, we computa-

tionally generated these data at the individual level by replicating

the real individuals’ recorded behaviour in a simulation and

simultaneously applying independently parameterized submodels

related to the desired variables. Using statistical techniques such as

SSFs as an IBM’s trait also has the advantage of offering validation

procedures usually not used in the validation of IBMs, such as k-

fold cross-validation , e.g., [28,29], thus increasing the model’s

robustness. We also validated the model by comparing patterns at

higher levels of emergence (habitat selection and home range size)

produced by the model and observed in the real system. Finally,

we ran simulations for the current landscape of the study area and

for a hypothetical landscape with hardwood encroachment, and

observed a functional response in habitat selection by the

simulated individuals, demonstrating that IBMs based on gener-

ative mechanisms allow for the prediction of animals’ plastic

reactions to changes in the environment.

Development of the movement model

Ethics Statement
The study was carried out in strict accordance with the

recommendations in the Guide to the Care and Use of

Experimental Animals of the Canadian Council on Animal Care.

The protocol was approved by an Institutional Animal Care and

Use Committee – Comité de protection des animaux of the

Université Laval Permit Number: 2008026-3. Caribou collaring

was done with individuals under physical restraint. All efforts were

made to minimize stress and suffering. Collaring was performed by

members of the Quebec Ministry of Natural Resources, and no

permit was required for the captures. Woodland caribou is

considered as threatened in the Canadian boreal forest by the

Committee on the Status of Endangered Wildlife in Canada [26].

Study area and GPS monitoring
The study area is located in the Côte-Nord region (50uN to

52uN, 68uW to 71uW) of Québec, Canada. An aerial survey

conducted over the study area in March 2007 revealed that

caribou density was 1.9 individuals/100 km2 [30]. We concen-

trated our case study on the winter period, from December 28th to

April 15th [31], because it represents a time of high stress for this

species. Heavy snow increases predation risk, as well as the energy

allocated to locomotion and foraging [32]. Twenty-seven caribou

were monitored using GPS collars (Lotek Engineering, Newmar-

ket, ON) or ARGOS/GPS collars (Telonics, Mesa, AZ), from

2005 to 2009, during which each caribou was followed for an

average of 19 months. Radio-collars were scheduled to record a

location every 4 hours.

We used Landsat Thematic Mapper images taken in 2000 with

a 25-m resolution grid describing landcover classes found in the

study area (Natural Resources Canada, Canadian Forest Service,

Laurentian Forestry Centre). Satellite images were composed of 48

land cover classes, which were reclassified into 12 classes for which

we had lichen biomass estimates [33]: fixed open area, burned

area, water body, heath without lichen, heath with lichen,

wetlands, regenerating mixed forest, regenerating coniferous

stand, open conifer stand without lichen, dense mature conifer

forest, open conifer stand with lichen, mixed/deciduous forest. We

added 3 classes, namely regenerating cut (5–20 years after a forest

cut), recent cut (v5 years after a forest cut), and road, based on

data provided by the forestry companies operating in the region.

These three classes and the burned area class were updated on a

yearly basis. For example, after 5 years, a recent cut was

reclassified as a regenerating cut, and recent cuts were added

every year. As a result, the spatial distribution of these three classes

was not constant over the years. A digital elevation model at the

Uniting Statistical and Individual-Based Modelling

PLOS ONE | www.plosone.org 2 June 2014 | Volume 9 | Issue 6 | e99938



scale of 1:20 000 was then used to estimate elevation and slope in

the study area.

Generative mechanisms and variables
Identifying the generative mechanism to allow for

generalization. Movements were modelled by a biased corre-

lated random walk (BCRW). Three broad kinds of biases were

considered: the geometric characteristics of the observed move-

ments, i.e. the step length (SL) and the turning angle (TA, i.e. the

angle from the previous step to the current step) distributions, the

landcover types, and the costs and benefits of moving. These three

biases can be ordered according to the level of emergence

framework [23]. Indeed, if individuals select or avoid some

landcover types, different amounts and spatial configurations of

these landcover types should give rise to different SL and TA

distributions. The approach based on landcover types thus has a

lower level of emergence than the approach based on SL and TA.

Similarly, if individuals move according to some trade-off between

costs and benefits related to their energetics and predation risk (for

example, if percentage of canopy cover represents a shelter to hide

from predators, a well fed individual may favour this kind of

environment even if it provides few resources; conversely, a

hungry individual may select risky environments if it provides

resources [34]), we hypothesized that this trade-off could translate

into different selections of the various landcover types according to

their amounts and spatial configurations, a phenomenon known as

functional response [35]. A modelling approach based on the costs

and benefits of moving thus has a lower level of emergence than

the approach based on the selection of specific landcover types. It

can therefore be considered as a generative mechanism that

should allow the model to be valid for different environmental

conditions.

Following Latombe et al. [23], we define the intended domain of

applicability as the whole set of conditions for which the model is

supposed to be used, with respect to the effective domain of

applicability, which is the set of conditions for which the model is

valid in practice. If the level of emergence of the IBM’s process is

too high, the process will be specific to the particular environ-

mental conditions corresponding to the data used for parameter-

ization, and the effective domain of applicability will be smaller

than the intended domain of applicability, which is a case of

overfitting. On the other hand, using a generative mechanism at a

lower level of emergence, such as the trade-off between costs and

benefits of moving as used in this study, will produce a model able

to generalize to a larger set of environmental conditions than the

ones used for parameterization, thus preventing overfitting.

Variables corresponding to the generative

mechanism. To represent the trade-offs between the costs

and benefits of moving, we included variables corresponding or

related to habitat features and internal state variables, estimated

for each step in the movement model. Vegetation biomass was

observed to influence habitat selection by caribou [36]. As proxies

for vegetation biomass, we used the percentage of canopy cover at

the end of the step Cover and the 2D gradient of percentage of

canopy cover at the end of the step Edge, computed over a 3|3

Moore neighbourhood (a high value of Edge of a cell represents a

transition from one density of canopy cover to another [37]). The

distance to human-induced habitat edges was shown to influence

caribou movements and the resulting spatial distribution [38]. We

thus considered in our analyses the angle and distance to the

closest road (aroad and Droad), recent cut (arec:cut and Drec:cut), and

regenerating cut (areg:cut and Dreg:cut).

Caribou behaviour is influenced by forage distribution [39].

The short-term functional response of lichen consumption X was

modelled using a Michaelis-Menten equation (1) [40]:

X (V )~
aV

bzV
ð1Þ

where a is the maximum rate of consumption, b is the foraging

efficiency, i.e. the resource biomass for which intake is one-half of

the maximum rate, and V is the resource biomass of the cell. a was

set to 61.3 g/day per kg body weight [41]. b was set to 40 g/m2

[40]. V varied according to the land cover type, and was taken

from [33]. X was then converted into energy gains G, with a rate of

7.79 kJ/g (1.86 kcal/g) [41], in order to be more easily compared

with energy expenses due to displacements.

For each 4-hour step, energy expenditures L are computed by

summing the basal metabolic rate for a time step, the energy

expenses due to the travelled distance, and the energy expenses

due to the difference of altitude along a step [42,43].

Internal state should be taken into account in an approach

based on costs and benefits of moving because they represent the

justification for moving. They ‘‘account for the physiological and,

where appropriate, the psychological state of the focal individual,

driving the organism to fulfill one or more goals’’ [14]. In this

study, we explicitly modelled two internal states: the stored energy

and a representation of the memory of visited locations. Stored

energy has indeed been shown to influence herbivores’ grazing

strategies [13]. We thus computed the cumulative energy over the

last 3 days DE~
P

3 days

G{Lð Þ. We also modelled a memory effect,

defined as the minimum angle acluster between the step direction

and previous clusters of locations, because animals tend to come

back to familiar areas for forage and safety [44]. acluster is related to

the internal state of the modelled individuals because each

modelled individual can remember a limited number of clusters

PatchArray, characterized by their locations and order of visits. As

new clusters are created, if the maximum number of remembered

clusters is reached, the oldest ones are deleted, and the list of

remembered clusters is updated. If an individual is located in a

cluster (i.e. less than 1600 m from the cluster’s centroid, this state

being characterized by a boolean variable inPatch), the location of

the cluster’s centroid is updated based on the animal’s movements.

For in-depth details on the computation of each variable, and

associated submodels and assumptions, we refer the reader to

Appendix S1.

To compute these variables, the IBM is made of two entities:

individuals, which represent caribou, and the environment. Each

of these entities is characterized by state variables (Tables 1 and 2),

from which the variables linked to the generative mechanisms

were computed.

Using a statistical technique as the IBM’s trait
Process overview and scheduling. The movements of

caribou were simulated sequentially by drawing, for each step,

21 random steps from the empirical step length and turning angle

distributions. A score was then allocated to each step based on the

environmental and state variables related to the generative

mechanisms. A step was selected based on these scores and the

individual moved to the destination of the step. Individuals then

ate, leading to an update of their cumulative energy over the last 3

days DE, depleting the quantity of lichen Lichen, and updating

their other internal variables PatchArray and inPatch based on their

new location, and their heading Heading based on the performed

step (see the description of submodels in Appendix S1 for

mathematical details). This process is executed for each individual

in series. More details on the variables used in eqn 2 and on the

Uniting Statistical and Individual-Based Modelling
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corresponding submodels are provided in section Parameterization

and in Appendix S1.

Given the number of variables the model simultaneously

implements to compute the scores of the steps used in this

BCRW, the space of solutions would be too wide to allow for

parameterization using an inverse modelling technique such as

POM [22,24,25]. It would indeed require a large number of

patterns [23], and it would also be time consuming as full

simulations should be run at each iteration of the parameters’

refinement process. This justifies the use of a statistical technique

as a forward modelling approach. More specifically, the scores

were computed using a Step Selection Function (SSF) [16] based

on the variables listed previously, related to the generative

mechanisms. SSFs establish the relationship between animal

movements and habitat features by comparing observed and

random steps. To estimate the SSF, caribou’s paths were broken

down into steps, which correspond to the straight-line segment

between successive locations at 4-hour intervals. Each observed

step was then paired with 20 random steps having the same

starting point, but differing in length and direction. We used 20

random steps as a compromise between using enough steps to be

able to detect all of the possible 15 landcover classes and the

practical necessity to keep the computational requirements of the

model low. This order of magnitude is consistent with other studies

which consider only 10 steps, but also fewer habitat classes, e.g.,

[45]. The lengths and turning angles of random steps were drawn

from the empirical distributions comprised of the steps of all

individuals collected during the winter period, from December

28th to April 15th [31]. The characteristics of pairs of observed

and random steps were compared with a conditional logistic

regression, using the sets of observed and random steps sharing the

same starting point as stratums. The resulting SSF took the general

form:

w(x)~exp(b1x1z:::zbnxn) ð2Þ

where w(x) represents the SSF score for the step described by the

vector x of variables xi associated with each observed or randomly

drawn step, and bi is the coefficient corresponding to xi. A positive

coefficient bi indicates a selection for the variable (the individual is

more likely to use a step associated to positive values of xi), whereas

a negative coefficient means that the variable is avoided. For

mathematical details on SSF assessment, see Fortin et al. [16] and

Forester et al. [46].

Keeping track of internal state variables. This approach

requires that for each observed and random step, the variables

included in the SSF can be computed. Amongst the environmental

and state variables related to the generative mechanisms, L, Cover,

Edge, aroad , Droad, arec:cut, Drec:cut, areg:cut, and Dreg:cut are related to

habitat features and can easily be obtained from the cartographic

and animal tracking data (see Appendix S1 for the mathematical

details to compute these variables). However, this is not true for G,

acluster, and DE. On the one hand, G and DE require the use of

both an energetic model and a resource depletion model (G is a

function of the quantity of resources at the end of the step, which is

depleted when the animal eats; DE is the sum of G – L over 3 days,

i.e. 18 steps). On the other hand, acluster requires a progressive

recording and update of successive clusters of locations of the real

animals, as animals can come back to an already existing cluster,

which then needs to be updated (clusters were created dynamically

if consecutive locations were close to each other, and are

characterized by their centroid, which is updated if individuals

go back to an existing cluster; if the maximum number of clusters

is reached and a new cluster is created, the oldest cluster is deleted

from the memory; see Appendix S1 for mathematical details).

To generate these data, we replicated the steps of real

individuals (as recorded in the GPS data) in the simulated

environment, and simultaneously executed the different submodels

Table 1. State variables for the caribou.

State variables Unit Description

ID 60 number differentiating the individual from conspecifics

Location (m,m) the coordinates of the individual location according to the projection UTM NAD 83 Zone19

Heading radians direction faced by the individual

DE kJ the energetic balance over the last 72 hours

inPatch Boolean state of being (1) or not (0) in a patch

PatchArray (m,m, 60) array of locations of past patches, and number of locations composing the patch

doi:10.1371/journal.pone.0099938.t001

Table 2. State variables for the environment.

State variables Unit Description

Location (m,m) coordinates of the cell according to the projection UTM NAD 83 Zone19

Altitude m altitude of the cell

coverType 60 Land-cover type

Lichen grams quantity of lichens

Cover % percentage of canopy cover in a 25|25 m cell

Edge 60 2D gradient of the percentage of canopy cover

doi:10.1371/journal.pone.0099938.t002

Uniting Statistical and Individual-Based Modelling
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described in Appendix S1 to update the internal and environ-

mental variables, as in an IBM. For each observed and replicated

step of each animal, we drew 20 random steps, and computed and

recorded the variables G, L, DE and acluster for these steps too

(Fig. 1). At each iteration, the values of the different variables were

recorded for each observed and random step (note that internal

and environmental variables were not updated for random steps)

to create a database that allowed for the estimation of the SSF by

means of traditional conditional logistic regression.

Parameterization

SSF models
To account for trade-offs between costs and benefits of moving,

variables related to energy rate, predation risk, and human-

induced disturbance were included in eqn 2. Three different SSFs

of increasing complexity were fitted using the following models: 1)

a memory model which only takes into account spatial memory:

Memory model*cos(acluster)

2) an energetic model which also takes into account the ratio

between energy gains and expenditures:

Energetic model*Memory modelzG=Lz(G=L)|DE

3) an environment model which also takes into account

environmental variables and human disturbance:

Environment model*Energetic modelzCoverzCover|DE

zAltitudezEdgezcos(aroad )|f (Droad )

zcos(arec:cut)|f (Drec:cut)zcos(areg:cut)|f (Dreg:cut)

Statistical details
Because caribou locations were measured every 4 hours,

successive steps were not independent. Robust standard errors of

SSF parameters can be estimated using a robust sandwich estimate

of the covariance matrix [47]. This approach requires partitioning

the data into clusters of autocorrelated steps, each cluster being

independent from the others [47,48]. Autocorrelation and partial-

autocorrelation analyses of the deviance residuals showed that

autocorrelation disappeared beyond lag 2. We thus ensured that

all clusters were independent by removing locations so that the last

location of a given cluster was separated by at least 2 steps

(8 hours) from the first location of the next cluster. To assess

whether movements were independent amongst radio-collared

individuals, we estimated the distance between simultaneous

locations of all individuals. Individuals were considered indepen-

dent if they were separated by more than 100 m [29]. When two

individuals were closer than 100 m, the two clusters to which these

locations pertained were merged into a single cluster. Finally,

variance inflation factors (VIF) were v3 for all variables,

indicating a lack of multicolinearity [49]. The data used for

parameterizing the SSF can be found online in the supplementary

material.

Parameterization results
The level of empirical support received by the SSF was assessed

for each model using the quasi-likelihood under independence

criterion (QIC) [50]. The QIC accounts for nonindependence

between subsequent observations by being calculated while also

Figure 1. IBM and data generator scheduling. Comparison of schedules of (a) an IBM, and (b) modification of the IBM to generate surrogate
data. Rectangles represent an action, while diamonds check if a condition is completed and to decide on the next action according to the result.
doi:10.1371/journal.pone.0099938.g001
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considering independent clusters of observations [51]. Like the

Akaike Information Criterion (AIC), the QIC penalizes over-

complexity by adding a penalty term for the number of

parameters, thus allowing for a compromise between parsimony

and fitting capacities, to prevent overfitting. The Environment

model including all memory, energetic and environment variables

explained the movement data better than the simpler models,

meaning that the latent covariables were relevant (Table 3).

Caribou biased their movements towards previously visited

patches (Table 4). They selected steps with a high ratio of energy

gains over energy expenditures. They selected areas of low canopy

cover, of high altitude, and avoided roads and regenerating cuts.

When their energy level over the last 3 days was high, they

increased their selection of areas of low canopy cover.

Note that the b-value associated with the term G=L|DE is

positive, meaning that the higher the energy balance over the last

three days, the more individuals increase the Gain/Loss ratio,

which seems counter-intuitive. This is probably due to the fact that

a high DE means that the individual is in a patch of high

resources, which attracts the individual, and then leads to the

formation of a cluster. Another possible explanation of this

counter-intuitive result is the fact that in the model, individuals

only gain energy at the end of a step. We used this simplifying

assumption for computational reasons to avoid having to compute

the resource consumption and depletion over all cells along all

possible steps. In the IBM, leaving a cluster is thus a combination

of a stochastic process, through the generation of random steps

and probabilistic selection of the possible steps, and the process of

resource depletion.

Validation

K-fold cross-validation
We used 5-fold cross-validation for case-control design to

evaluate model robustness. An SSF was built using 80% of

randomly selected strata. This SSF was then used to estimate w(x)
scores for the observed and random steps of the 20% withheld

strata. The observed steps of each stratum was ranked against its

associated random steps from 1 to 21 (i.e., 21 potential ranks given

that a stratum included 1 observed and 20 random locations)

based on the w(x) scores, where 1 was the lowest and 21 was the

highest possible rank for that stratum. Ranks of observed steps

were then tallied into the 21 potential bins. Spearman rank

correlation (rs) was performed between the bin’s ranking (121) and

its associated frequency. The process was done 100 times, and the

average rs and associated 95% confidence intervals are reported.

Model robustness was strong, as indicated by the distribution of

observed rs (0.94, 95% CI: 0.88–0.98), which was higher than

expected by chance alone (20.02, 95% CI: 20.49–0.40).

Model validation based on emergent patterns
An additional (and more common) means to validate the IBM is

to verify that the generative mechanisms used as a trait of the

model allows for the reproduction of patterns at higher levels of

emergence. By doing so, we verify that our understanding of the

system’s mechanisms is robust, and according to the level of

emergence paradigm, this should ensure the generalization ability

of the IBM. Contrary to k-fold cross-validation, this process can

thus be characterized as a vertical process.

First, we verified that modelled individuals would select the

different landcover types similarly to their real counterparts. We

simulated as many individuals as were represented in the GPS data

for each year, for 648 iterations (corresponding to the 108 days of

the winter season, multiplied by 6 steps per day) and initialized

their locations at the same coordinates. Simulated individual

movements were confined to the home ranges of the real

individuals by deleting and re-drawing any random step falling

outside of the home range of the corresponding real individual, to

remove the influence of differences of home range between real

and simulated individuals on land-cover types selection. We tested

4 different selection methods for the steps based on their score: the

best method, when the step with the highest score is always

selected, the best90 method, when the step with the highest score is

selected 90% of the time, and any step has an equal probability to

be selected the remaining 10% of the time, the roulette wheel

method, in which each step has a probability P~
1=(1zw(x))
P

1=(1zw(x))
to be selected (the logistic function was used instead of the raw

score because it represents the probability of use conditioned on

habitat [52]), and a simple CRW method in which every step has

an equal probability of being chosen, which represents the null

model. The model was then run 20 times for each year and each

selection method. For each model, we estimated Resource

Selection Functions (RSF [53]) on landcover types for each real

individual and for each replication of the simulated individuals

[30]. RSF compare locations of individuals with random locations

drawn, in our case, in the home range of the individuals (defined

here as the 95% minimum convex polygon), and use logistic

regression by a generalized linear mixed model (GLMM, using a

logit function as the link function) to estimate the model’s

coefficients (b), following the same principle as an SSF. Each

RSF produced a vector of b-values representing habitat selection.

Patterns of habitat selection by separate individuals were then

compared for each selection method by computing a Pearson R

and a Spearman’s rs correlation coefficient computed between the

vector of b-values of a real individual and the vectors of the 20

runs of the corresponding simulated individual, for all b-values

and for b-values whose 95% confidence intervals excluded 0. For

each year, this procedure produced 20 correlation coefficients for

each monitored individual. We compared the four models using

generalized linear mixed models using the individuals and the

Table 3. Model selection amongst the candidate models of step selection by woodland caribou in the Côte-Nord region, Québec
(Canada), in winter.

No. Candidate Model K QIC D QIC wi

1 Mechanistic model 1 144632.3 546.6 0%

2 Energetic model 3 144197.3 111.6 0%

3 Environment model 10 144085.7 0 100%

Number of parameters (K), QIC scores, differences in QIC compared to lowest scoring model (D QIC) and QIC weights (wi) for the three candidate models.
doi:10.1371/journal.pone.0099938.t003
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years as random effects, to explain the proportion of explain

variance. Results show that the best and best90 methods performed

significantly better than the roulettewheel method and the CRW

(R on all b-values: best, t = 1.79, p-value~0.0738 - best90, t = 5.72,

p-valuev0.0001 - CRW, t = 20.55, p-value~0.5836; R on b-

values whose 95% confidence intervals excluded 0: best, t = 11.33,

p-valuev0.0001 - best90, t = 12.55, p-valuev0.0001 - CRW,

t = 20.76, p-value~0.4492; rs on all b-values: best, t = 9.12, p-

valuev0.0001 - best90, t = 11.80, p-valuev0.0001 - CRW, t = 2

0.56, p-value~0.5782; rs on b-values whose 95% confidence

intervals excluded 0: best, t = 11.02, p-valuev0.0001 - best90,

t = 11.66, p-valuev0.0001 - CRW, t = 21.35, p-value~0.1757;

Fig. 2).

We then verified that the size of simulated and real individuals’

home ranges would also coincide. We simulated as many

individuals as represented in the GPS data for each year, and

initialized their locations at the same coordinates, but this time

without restraining their movements. We then compared the areas

of the 95% minimum convex polygons (MCP) for the locations of

each real and simulated individual for each year and for each

selection method. To do so, we divided the simulated areas by the

real ones when simulated areas were higher, and we divided the

real areas by the simulated ones |{1 when simulated areas were

smaller. This results in a coefficient [�{?,{1½|½1,?½. We

therefore added and subtracted 1 to the negative and positive

values, respectively, to obtain a coefficient [�{?,?½, for which 0

means that home ranges have the same area. The best and best90
methods produced slightly smaller home ranges than the roulette

wheel one and the CRW (Kruskal-Wallis test: x2 = 26.72, df = 3, p-

valuev0.0001), and smaller than observed in the real system, but

the simulated values of our index still encompass 0 (Fig. 3). Simple

CRWs should not allow to model persistent home ranges on the

long term [54]. The fact that the CRW produces realistic home

ranges in this case means that the length of the winter season is too

short to allow for the ability of the model to produce a home range

to be truly observable. However, the fact that the best and best90

methods show a tendency to limit the displacements of simulated

individuals to smaller areas suggests that the memory effect

represented by the apatch variable allows for the establishment of a

home range, and shows the potential of the model to maintain the

home range pattern when simulating longer periods.

Simulations of environmental changes

To illustrate the ability of the IBM to simulate the behavioural

responses of individuals to environmental changes, we ran

simulations for different environments, using the best90 selection

method. We divided the simulated area into 225 km2 quadrats

(corresponding to the current size of forest harvesting blocks), and

changed the landcover types at the center of each quadrat other

than fixed open areas and water bodies to mixed forest stands to

represent a phenomenon of encroachment of deciduous trees,

which is a common consequence of forest harvesting. This resulted

in modifying the amount of resources, percentage of canopy cover,

etc. for woodland caribou, because they consume preferably

terrestrial lichens in winter [39]. We tested 2 different environ-

ments. In the first one, we used the 2009 environment for the study

area without modifying the landcover types. In the second one, we

replaced the landcover types in a square representing 70% of each

quadrat by mixed forest, which corresponds to the maximum level

of harvest permitted under current logging practices.

For each scenario, we ran 20 simulations with 600 individuals

initialized randomly over the open conifer with lichen forest

stands, because this landcover type is the species’ preferred habitat

during winter [30]. During simulations, we recorded the ID,

coordinates, and landcover types of all the locations for all

individuals. To assess the differences in the selection of the

different landcover types with respect to different availability, we

computed, for each simulation run, an RSF model over all the

individuals, with random points drawn over the whole study area,

taking the form: w(x)~exp(
P15

i~1

bixi), where xi is a boolean

variable of presence/absence of the corresponding landcover type

at the location of the observed of random point. We represented

the distributions of each b-value over the 20 simulations for both

scenarios, and verified if the difference of distributions between the

two scenarios for each b-value was significant using a Wilcoxon-

Mann-Whitney test for each landcover type (Fig. 4). In response to

the encroachment of deciduous trees, individuals decreased their

selection of fixed open areas, burned areas and water, but selected

mixed and deciduous forests, which were avoided during the 2009

scenario. Other changes in habitat selection were not significant.

To assess the differences in home range sizes, we computed the

95% MCP area of each individual for each replication, and

compared the resulting distributions between the two scenarios

Table 4. Coefficients (b), standard error (SE) and 95% confidence intervals (CI) for the complete SSF model for the woodland

caribou in the Côte-Nord region, Québec (Canada), in winter (values are |102).

Variable b SE 95% CI

cos(apatch) 37.88 1.48 (34.98:40.79)*

G/L 14.97 1.70 (11.63:18.30)*

Cover 20.16 0.05 (20.26:20.05)*

Altitude 0.23 0.03 (0.18:0.29)*

Edge 0.02 0.02 (20.03:0.06)

cos(aroad )|f(Droad) 29.59 4.47 (218.35:20.83)*

cos(arec:cut)|f(Drec:cut) 0.21 9.83 (219.05:19.48)

cos(areg:cut)|f(Dreg:cut) 262.99 21.04 (2104.23:221.77)*

G/L|D E 16.25 2.90 (10.58:21.93)*

Cover|D E 20.34 0.12 (20.57:20.10)*

*Coefficients for which the 95% confidence intervals excluded zero.
doi:10.1371/journal.pone.0099938.t004
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(Fig. 5). A Wilcoxon-Mann-Whitney test showed that distributions

were not significantly different (W = 135317637, p-value = 0.22).

Discussion

Model robustness
We designed an individual-based model of woodland caribou’s

movements with a wide domain of applicability, which can

therefore inform on the impact of changes in the composition of

the boreal forest’s landscape due to management plans and other

human and natural disturbances, on caribou habitat selection. To

ensure that the model could be applied to a broad range of

environmental conditions which have not yet been observed in the

real system, we used generative mechanisms at a low level of

emergence based on internal state variables (energetic require-

ments and spatial memory) and habitat features as a trait.

Movements were modelled by an SSF calibrated using conditional

logistic regression, i.e. forward modelling. SSF calibration was

made possible by the generation of internal state variables using an

IBM-based framework. Contrary to an inverse modelling process,

the SSF calibration involved model selection using information

theory, which allows for the statistical dismissal of over-complex

models by penalizing the model’s performance with the number of

parameters. Note that, due to this model selection process, forward

modelling also provided the advantage over pure inverse

modelling of being faster, as it did not require to iteratively run

simulations to adjust the IBM parameters, which can be extremely

computationally intensive.

If the parameterization process allows for the selection of the

necessary variables, the purpose of validation is to ensure that the

variables are also sufficient to explain and reproduce the emergent

patterns, related in our case to the animals’ movements. IBMs are

usually validated by reproducing patterns of comportments at

higher levels of emergence, which we performed using patterns of

habitat selection and spatial distribution. This is thus a vertical

validation, which ensured that the model captured the processes of

the natural system. As a general rule, the strength of the validation

procedure depends on the number of comportments which can be

compared. In this work, we applied vertical validation with respect

Figure 2. Validation of the habitat selection pattern. Distribution of the Pearson R and Spearman rs correlation coefficients between the b-
value vectors for real and simulated individuals for the IBM with the different step selection methods based on the SSF scores of the steps (the best,
the best90 and the roulette wheel methods) and a simple CRW (which selects any step with equal probability): (a) R is computed over all b-values, (b) R
is computed over b-values whose 95% confidence intervals exclude 0, (c) rs is computed over all b-values, and (d) rs is computed over b-values whose
95% confidence intervals exclude 0. A high correlation coefficient means that simulated individuals select land cover types in a similar fashion to real
individuals, hence validating the model. A generalized linear mixed model showed that the best and best90 methods performed better than the
roulettewheel method and the CRW (R on all b-values: best, t = 1.79, p-value~0.0738 - best90, t = 5.72, p-valuev0.0001 - CRW, t = 20.55, p-
value~0.5836; R on b-values whose 95% confidence intervals excluded 0: best, t = 11.33, p-valuev0.0001 - best90, t = 12.55, p-valuev0.0001 - CRW,
t = 20.76, p-value~0.4492; rs on all b-values: best, t = 9.12, p-valuev0.0001 - best90, t = 11.80, p-valuev0.0001 - CRW, t = 20.56, p-value~0.5782; rs

on b-values whose 95% confidence intervals excluded 0: best, t = 11.02, p-valuev0.0001 - best90, t = 11.66, p-valuev0.0001 - CRW, t = 21.35, p-
value~0.1757).
doi:10.1371/journal.pone.0099938.g002
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to only two comportments, namely habitat selection and home

range size.

When only few comportments can be used for vertical

validation, using statistical techniques such as SSFs for the forward

modelling of the IBM trait provides the advantage of allowing for

additional horizontal validation, i.e. using data from variables used

in the IBM’s trait, using k-fold cross-validation. Like any cross-

validation process, k-fold cross-validation proceeds by reducing the

size of the training base and then verifies that the rest of the data

are correctly explained by the SSF assessed on this reduced

database. The subtlety lies in the fact that the process is repeated a

certain number of times, randomizing the data partition, to

account for the small size of the database. Because generative

mechanisms should be able to explain the data whatever the range

of environmental conditions, k-fold cross-validation is therefore a

relevant method to verify the fact that the variables used in an SSF

model allow for generalization to different environments. Because

it makes use of data at the same level of emergence, k-fold cross-

validation can be characterized as a horizontal process (c.f. Fig. 4 of

[23]). One drawback of k-fold cross-validation is that its capacity

to assess the generalization ability of the IBM depends on the

variability of environmental conditions in the database. If the

environment is uniform, the environmental conditions represented

by the remaining data will be similar to the conditions used to

assess the SSF, and results are therefore expected to be conclusive.

Each approach thus has its own limitations, but using a

combination of horizontal k-fold cross-validation and vertical

validation based on emergent patterns increased our confidence in

the robustness of the model.

Important changes in the composition of the environment are

likely to generate a functional response in the selection of the

landcover types by caribou. This phenomenon has been observed

for local changes in the environment, e.g., [55]. However,

functional responses are hard to predict, both qualitatively and

quantitatively, because they emerge from generative mechanisms

at a lower level of emergence. This is especially true at large spatial

and temporal scales because of the difficulty to obtain data at such

scales. On the other hand, studies based on local changes in the

environment may not encompass the global changes that may

occur over long periods and large areas, potentially making

management plans based on such limited observations ill-adapted

in a conservation or management context. The processes of the

IBM presented in this study were based on trade-offs between costs

and benefits of moving, i.e. generative mechanisms at a low level of

emergence, which allowed the IBM to produce an emergent

functional response in the selection of landcover types by

Figure 3. Validation of the home range size pattern. Distribu-
tions of the 95% minimum convex polygons areas for the different step
selection methods based on the SSF scores of the steps (the best, the
best90 and the roulette wheel methods) and a simple CRW (which
selects any step with equal probability). The best and best90 methods
produced slightly smaller home ranges than the roulette wheel one and
the CRW (Kruskal-Wallis test: x2 = 26.72, df = 3, p-valuev0.0001).
doi:10.1371/journal.pone.0099938.g003 Figure 4. Patterns of habitat selection for the two scenarios.

Distributions of the b-values for the 15 landcover types: 1 = fixed open
areas, 2 = burned area, 3 = water, 4 = heath without lichen, 5 = heath
with lichen, 6 = wetlands, 7 = regenerating mixed forest, 8 = regenerat-
ing coniferous stand, 9 = open conifer stand without lichen, 10 = dense
mature conifer forest, 11 = open conifer stand with lichen, 12 = mixed/
deciduous forest, 13 = regenerating cut, 14 = recent cut, 15 = road. Open
conifer stand without lichen is the class of reference and does not
appear in the graph. Asterisks indicate landcover types for which a
Mann-Whitney test between distributions produced a p-valuev0.05.
doi:10.1371/journal.pone.0099938.g004

Figure 5. Patterns of home range size for the two scenarios.
Distributions of the 95% minimum convex polygons areas for the 2009
and the hardwood encroachment scenarios. A Wilcoxon-Mann-Whitney
test showed that distributions were not significantly different
(W = 135317637, p-value = 0.22).
doi:10.1371/journal.pone.0099938.g005
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simulated caribou when the landscape was subject to a large-scale

change in the environment, in this case the extreme encroachment

of deciduous trees. This functional response can also be quantified,

hence highlighting the potential for such a model in a conservation

context. Moreover, the model allowed us to assess the functional

response at the level of a population and at the scale of the

landscape, whereas empirical studies usually assess it for separate

individuals and at smaller spatial scales (e.g. inter home-range level

[35,56–58] or within home-range level [55]), because of the

limitations resulting from a restricted number of monitored

individuals.

Ecological relevance
Increasing the amount of mixed and deciduous stands in the

landscape produced two types of response from simulated

individuals. First, they decreased their selection of landcover types

with a low amount of resources and low canopy cover. This may

be due to the fact that, according to the SSF that serves as a trait

(Table 4), individuals decrease their selection of landcover types

having low canopy cover, which provide a low ratio between

energy gains and expenditures as their energy level decreases.

Because mixed and deciduous forests do not contain a lot of

resources for caribou, their energy level was likely to be lower for

the scenario of encroachment of deciduous trees than for the 2009

landscape. Simulated individuals also selected mixed and decid-

uous forest stands in the encroachment of deciduous trees

scenario, while they avoided them in the 2009 landscape. This is

probably due to the fact that they have to travel more through this

landcover type to access resources, given its widely spread spatial

configuration. Because woodland caribou in the study area are

part of a predator-prey network involving multiple species at

different trophic levels, this functional response can have

important repercussions on caribou populations. Encroachment

of deciduous trees in the study area is likely to result in an increase

of moose (Alces alces, G.) abundance, and therefore of gray wolf

(Canis lupus, L.) density, as moose is its main prey [59].

Consequently, this may in turn increase the predation rate of

wolves on caribou, a phenomenon known as apparent competition

[60]. Moreover, wolves select mixed and deciduous forest stands in

winter in the study area, probably because it is the preferred

landcover types of moose [30]. As such, the increased predation

rate on caribou that may result from the encroachment of

deciduous trees through apparent competition would probably be

intensified due to the selection of mixed and deciduous forest

stands by caribou. Simulating moose and wolves in addition to

caribou would be required to confirm this hypothesis.

Conclusions

In this study, we designed an individual-based model of

caribou’s movements based on generative mechanisms at low

levels of emergence to ensure its generalization ability. We used a

statistical technique to parameterize the IBM’s trait according to

forward modelling principles. This was made possible by the

artificial generation of surrogate data for the variables at low levels

of emergence which were not directly accessible from the GPS

data.

This procedure ensured that the trait of the IBM was statistically

relevant to explain the data, but also that the parameters identified

by the statistical modelling allowed for the generation of

behaviours at higher levels of emergence. These two aspects

demonstrated both the necessity and sufficiency of the variables

used in the SSF model to explain the system’s behaviour of

interest. Using a statistical model as a trait of the IBM also

increased its robustness because it allowed to use two independent

validation processes: k-fold cross-validation, a horizontal process

which uses data at the same level of emergence as the data used for

parameterization, and emergent patterns validation, a vertical

process which ensures that the model allows for the reproduction

of patterns at higher levels of emergence. Moreover, by favouring

forward modelling, this method also has the advantage of reducing

the number of iterations that would be required by pure inverse

modelling methods.

Generating functional responses suggests that our framework

permitted to design a model that encompasses some aspect of the

complexity of the system, and, thus, that the approach is adequate

to provide projections on future possible states of the system in

reaction to different management plans. This is especially relevant

to test the long-term impact of scenarios corresponding to

environmental configurations that have yet to be observed in the

real system.

Supporting Information

Appendix S1 Submodels. Mathematical details and assump-

tions of the submodels for the computation of the generative

mechanism-related variables. Figure S1. Relationship between

the number of clusters and the number of caribou locations. For

each individual for each year, we took the first 100 locations, then

the first 200 locations, and so on until the total number of

locations, and we plotted the number of clusters versus the number

of locations, which is represented by the circles. The solid line

represents the median of the number of clusters over all individuals

for each hundred locations, and the error bars show the lower and

upper quartiles. Figure S2. Impact of anthropogenic features on

movement. Changes in the cosinus of mean orientation for real

steps with respect to (a) the nearest road, (b) recent cut, and (c)

regenerating cut, as a function of distance from these anthropo-

genic features for 22 radio-collared caribou during winter in the

Côte-Nord region of Québec, Canada. For example, caribou

traveling perpendicular to and leading away from the nearest

disturbed area were assigned 2180u (producing a cosinus value of

21), whereas those travelling directly towards the area were

assigned 0u (producing a cosinus value of +1). For each 100 m

interval, we then computed the mean of the orientation over all

locations and all individuals. The left axis indicates the mean value

for points taken from the GPS data. The relation between the

distance from anthropic perturbations and the angle was

approximated as linear at first, and to disappear after some

distance, as shown by the solid line. The distance at which the

influence of distance was considered to disappear (and at which

the linear function crosses 0) corresponds to the first point superior

or equal to 0, i.e. 1500, 1600 and 1300 m for roads, recent cuts

and regenerating cuts, respectively. The linear function f (Ddisturb)

was scaled between 0 and 1 in order to give more influence to the

direction of a step when close to a disturbance (f (0)~1), and no

influence when the distance is high, hence the inverse right axis.

(PDF)

Data S1 Supporting data.
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